Answer :
To find the exact value of [tex]\(\tan \theta\)[/tex] given the options:
A. [tex]\(\frac{\sqrt{5}}{3}\)[/tex]
B. [tex]\(\frac{3 \sqrt{14}}{14}\)[/tex]
we can compare their numerical values.
First, evaluate option A:
[tex]\[ \frac{\sqrt{5}}{3} \][/tex]
Calculating the square root of 5:
[tex]\[ \sqrt{5} \approx 2.236 \][/tex]
Then divide by 3:
[tex]\[ \frac{2.236}{3} \approx 0.745 \][/tex]
So, the approximate numerical value of [tex]\(\frac{\sqrt{5}}{3}\)[/tex] is [tex]\(0.745\)[/tex].
Next, evaluate option B:
[tex]\[ \frac{3 \sqrt{14}}{14} \][/tex]
Calculating the square root of 14:
[tex]\[ \sqrt{14} \approx 3.742 \][/tex]
Then multiply by 3:
[tex]\[ 3 \cdot 3.742 \approx 11.226 \][/tex]
Finally, divide by 14:
[tex]\[ \frac{11.226}{14} \approx 0.802 \][/tex]
So, the approximate numerical value of [tex]\(\frac{3 \sqrt{14}}{14}\)[/tex] is [tex]\(0.802\)[/tex].
Given these results, the exact value of [tex]\(\tan \theta\)[/tex] is the one corresponding to the numerical value we found. Since [tex]\(\tan \theta\)[/tex] approximately equals [tex]\(0.802\)[/tex], the correct option is
B. [tex]\(\frac{3 \sqrt{14}}{14}\)[/tex]
A. [tex]\(\frac{\sqrt{5}}{3}\)[/tex]
B. [tex]\(\frac{3 \sqrt{14}}{14}\)[/tex]
we can compare their numerical values.
First, evaluate option A:
[tex]\[ \frac{\sqrt{5}}{3} \][/tex]
Calculating the square root of 5:
[tex]\[ \sqrt{5} \approx 2.236 \][/tex]
Then divide by 3:
[tex]\[ \frac{2.236}{3} \approx 0.745 \][/tex]
So, the approximate numerical value of [tex]\(\frac{\sqrt{5}}{3}\)[/tex] is [tex]\(0.745\)[/tex].
Next, evaluate option B:
[tex]\[ \frac{3 \sqrt{14}}{14} \][/tex]
Calculating the square root of 14:
[tex]\[ \sqrt{14} \approx 3.742 \][/tex]
Then multiply by 3:
[tex]\[ 3 \cdot 3.742 \approx 11.226 \][/tex]
Finally, divide by 14:
[tex]\[ \frac{11.226}{14} \approx 0.802 \][/tex]
So, the approximate numerical value of [tex]\(\frac{3 \sqrt{14}}{14}\)[/tex] is [tex]\(0.802\)[/tex].
Given these results, the exact value of [tex]\(\tan \theta\)[/tex] is the one corresponding to the numerical value we found. Since [tex]\(\tan \theta\)[/tex] approximately equals [tex]\(0.802\)[/tex], the correct option is
B. [tex]\(\frac{3 \sqrt{14}}{14}\)[/tex]