Find the simplified product:

[tex]\[ \frac{b-5}{2b} \cdot \frac{b^2+3b}{b-5} \][/tex]

A. [tex]\(\frac{b+3}{2}\)[/tex]

B. [tex]\(b+3\)[/tex]

C. [tex]\(\frac{2}{b+3}\)[/tex]

D. [tex]\(2b+6\)[/tex]



Answer :

To simplify the expression [tex]\(\frac{b-5}{2b} \cdot \frac{b^2 + 3b}{b-5}\)[/tex], let's follow these steps:

1. Write down the given expression:
[tex]\[ \frac{b-5}{2b} \cdot \frac{b^2 + 3b}{b-5} \][/tex]

2. Notice that [tex]\((b - 5)\)[/tex] appears in both the numerator and the denominator, so they cancel each other out (as long as [tex]\(b \neq 5\)[/tex]).

After canceling [tex]\((b - 5)\)[/tex]:
[tex]\[ \frac{1}{2b} \cdot (b^2 + 3b) \][/tex]

3. Rewrite the remaining expression:
[tex]\[ \frac{b^2 + 3b}{2b} \][/tex]

4. Factor out [tex]\(b\)[/tex] from the numerator:
[tex]\[ \frac{b(b + 3)}{2b} \][/tex]

5. Cancel [tex]\(b\)[/tex] in the numerator and the denominator:
[tex]\[ \frac{b + 3}{2} \][/tex]

So the simplified form of the given expression is:
[tex]\[ \frac{b + 3}{2} \][/tex]

Therefore, the answer is [tex]\(\boxed{\frac{b+3}{2}}\)[/tex].