Answer :
To determine the volume of a cylindrical candle, we need to use the formula for the volume of a cylinder, which is:
[tex]\[ V = \pi r^2 h \][/tex]
Where:
- [tex]\( V \)[/tex] is the volume of the cylinder.
- [tex]\( \pi \)[/tex] (pi) is a mathematical constant approximately equal to 3.14159.
- [tex]\( r \)[/tex] is the radius of the circular base of the cylinder.
- [tex]\( h \)[/tex] is the height of the cylinder.
Given the radius [tex]\( r = 5 \)[/tex] inches and the height [tex]\( h = 18 \)[/tex] inches, we substitute these values into the formula:
[tex]\[ V = \pi (5)^2 (18) \][/tex]
Expand the expression:
[tex]\[ V = \pi \cdot 25 \cdot 18 \][/tex]
[tex]\[ V = \pi \cdot 450 \][/tex]
Thus, the formula that represents the correct way to find the volume of the candle is:
[tex]\[ V = \pi (5)^2 (18) \][/tex]
Hence, the correct answer is:
[tex]\[ V = \pi (5)^2 (18) \][/tex]
[tex]\[ V = \pi r^2 h \][/tex]
Where:
- [tex]\( V \)[/tex] is the volume of the cylinder.
- [tex]\( \pi \)[/tex] (pi) is a mathematical constant approximately equal to 3.14159.
- [tex]\( r \)[/tex] is the radius of the circular base of the cylinder.
- [tex]\( h \)[/tex] is the height of the cylinder.
Given the radius [tex]\( r = 5 \)[/tex] inches and the height [tex]\( h = 18 \)[/tex] inches, we substitute these values into the formula:
[tex]\[ V = \pi (5)^2 (18) \][/tex]
Expand the expression:
[tex]\[ V = \pi \cdot 25 \cdot 18 \][/tex]
[tex]\[ V = \pi \cdot 450 \][/tex]
Thus, the formula that represents the correct way to find the volume of the candle is:
[tex]\[ V = \pi (5)^2 (18) \][/tex]
Hence, the correct answer is:
[tex]\[ V = \pi (5)^2 (18) \][/tex]