Answer :
To find the volume of the sphere, let’s start by understanding the relationship between the volumes of the cylinder and the sphere given their geometrical properties.
1. Volume of a Cylinder Formula:
[tex]\[ V_{\text{cylinder}} = \pi r^2 h \][/tex]
Given:
[tex]\[ V_{\text{cylinder}} = 21 \text{ m}^3 \][/tex]
2. Volume of a Sphere Formula:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi r^3 \][/tex]
Since the height of the cylinder [tex]\( h \)[/tex] equals the diameter of the sphere, which is [tex]\( 2r \)[/tex], we can link the cylinder's volume to the sphere's radius:
[tex]\[ V_{\text{cylinder}} = \pi r^2 h = \pi r^2 (2r) = 2\pi r^3 \][/tex]
Given:
[tex]\[ 21 = 2\pi r^3 \][/tex]
Now, we solve for [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \frac{21}{2\pi} \][/tex]
Next, we use the volume formula for the sphere:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi r^3 \][/tex]
Substitute [tex]\( r^3 \)[/tex] from the previous step:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi \left( \frac{21}{2\pi} \right) \][/tex]
Simplify:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \cdot \frac{21}{2} \][/tex]
[tex]\[ V_{\text{sphere}} = \frac{4 \cdot 21}{3 \cdot 2} = \frac{84}{6} = 14 \][/tex]
Therefore, the volume of the sphere is:
[tex]\[ 14 \text{ m}^3 \][/tex]
So, the correct answer is:
[tex]\[ \boxed{14 \text{ m}^3} \][/tex]
1. Volume of a Cylinder Formula:
[tex]\[ V_{\text{cylinder}} = \pi r^2 h \][/tex]
Given:
[tex]\[ V_{\text{cylinder}} = 21 \text{ m}^3 \][/tex]
2. Volume of a Sphere Formula:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi r^3 \][/tex]
Since the height of the cylinder [tex]\( h \)[/tex] equals the diameter of the sphere, which is [tex]\( 2r \)[/tex], we can link the cylinder's volume to the sphere's radius:
[tex]\[ V_{\text{cylinder}} = \pi r^2 h = \pi r^2 (2r) = 2\pi r^3 \][/tex]
Given:
[tex]\[ 21 = 2\pi r^3 \][/tex]
Now, we solve for [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \frac{21}{2\pi} \][/tex]
Next, we use the volume formula for the sphere:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi r^3 \][/tex]
Substitute [tex]\( r^3 \)[/tex] from the previous step:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi \left( \frac{21}{2\pi} \right) \][/tex]
Simplify:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \cdot \frac{21}{2} \][/tex]
[tex]\[ V_{\text{sphere}} = \frac{4 \cdot 21}{3 \cdot 2} = \frac{84}{6} = 14 \][/tex]
Therefore, the volume of the sphere is:
[tex]\[ 14 \text{ m}^3 \][/tex]
So, the correct answer is:
[tex]\[ \boxed{14 \text{ m}^3} \][/tex]