To determine if the change in the inputs, [tex]\(x\)[/tex], is consistent, follow these steps:
1. Identify the [tex]\(x\)[/tex] values from the table:
[tex]\[
x = [-9, -6, -3, 0, 3, 6, 9]
\][/tex]
2. Calculate the differences between consecutive [tex]\(x\)[/tex] values:
[tex]\[
-6 - (-9) = -6 + 9 = 3
\][/tex]
[tex]\[
-3 - (-6) = -3 + 6 = 3
\][/tex]
[tex]\[
0 - (-3) = 0 + 3 = 3
\][/tex]
[tex]\[
3 - 0 = 3
\][/tex]
[tex]\[
6 - 3 = 3
\][/tex]
[tex]\[
9 - 6 = 3
\][/tex]
3. Compare the differences to see if they are the same:
[tex]\[
[3, 3, 3, 3, 3, 3]
\][/tex]
All the differences between consecutive [tex]\(x\)[/tex] values are [tex]\(3\)[/tex].
Therefore, the change in the inputs [tex]\(x\)[/tex] is the same, and it is equal to [tex]\(3\)[/tex].
So the answer is:
A. Yes, and it is equal to [tex]\(3\)[/tex].