Solve for Luneta:
[tex]\[ \text{Luneta} = \$560 - \left[(0.50)(\$560)\right] \left[\frac{2}{6}(660)\right] \][/tex]
[tex]\[ \text{Luneta} = \$560 - [\ldots] \][/tex]
[tex]\[ \text{Luneta} = \$ \][/tex]



Answer :

Let's break down the given expression step-by-step to solve for Luneta.

We start with the expression:

[tex]\[ \text{Luneta} = \left\{ \$560 - \left[(0.50)(\$560)\right] \right\} \left[ \frac{2}{6}(660) \right] \][/tex]

1. Calculate the value inside the inner brackets:
[tex]\[ (0.50)(\$560) \][/tex]

Let's calculate [tex]\( 0.50 \)[/tex] of \[tex]$560: \[ (0.50) \times 560 = 280.0 \] 2. Subtract this value from the initial \$[/tex]560:
[tex]\[ \$560 - 280.0 \][/tex]

Performing the subtraction:
[tex]\[ 560 - 280.0 = 280.0 \][/tex]

3. Next, calculate the multiplication inside the second set of brackets:
[tex]\[ \frac{2}{6}(660) \][/tex]

Simplify the fraction [tex]\(\frac{2}{6}\)[/tex]:
[tex]\[ \frac{2}{6} = \frac{1}{3} \][/tex]

Then multiply [tex]\(\frac{1}{3}\)[/tex] by 660:
[tex]\[ \frac{1}{3} \times 660 = 220.0 \][/tex]

4. Finally, multiply the results of the two parts together:
[tex]\[ 280.0 \times 220.0 \][/tex]

Performing this multiplication yields:
[tex]\[ 280.0 \times 220.0 = 61600.0 \][/tex]

Therefore, the final value of Luneta is:

[tex]\[ \text{Luneta} = 61600.0 \][/tex]