Which values of [tex]$a$[/tex] and [tex]$b$[/tex] make the equation true?

[tex]\[
\frac{(2 x y)^4}{4 x y} = 4 x^a y^b
\][/tex]

A. [tex]$a=0, b=0$[/tex]

B. [tex]$a=3, b=3$[/tex]

C. [tex][tex]$a=4, b=4$[/tex][/tex]

D. [tex]$a=5, b=5$[/tex]



Answer :

To solve for the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that make the given equation true:
[tex]\[ \frac{(2xy)^4}{4xy} = 4x^a y^b \][/tex]

we begin by simplifying the left-hand side of the equation step-by-step.

1. Simplify [tex]\((2xy)^4\)[/tex]:
[tex]\[\begin{align*} (2xy)^4 & = (2^4)(x^4)(y^4) \\ & = 16x^4y^4. \end{align*}\][/tex]

2. Substitute this back into the original equation:
[tex]\[ \frac{16x^4y^4}{4xy}. \][/tex]

3. Next, simplify the fraction [tex]\(\frac{16x^4y^4}{4xy}\)[/tex]:
[tex]\[\begin{align*} \frac{16x^4y^4}{4xy} & = \frac{16}{4} \cdot \frac{x^4}{x} \cdot \frac{y^4}{y} \\ & = 4 \cdot x^{4-1} \cdot y^{4-1} \\ & = 4x^3y^3. \end{align*}\][/tex]

So now we have:
[tex]\[ 4x^3y^3 = 4x^a y^b. \][/tex]

4. By comparing the exponents of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] on both sides of the equation:
[tex]\[\begin{align*} x^3 & = x^a, \quad \text{which implies that} \; a = 3, \\ y^3 & = y^b, \quad \text{which implies that} \; b = 3. \end{align*}\][/tex]

Therefore, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that make the equation true are:
[tex]\[ a = 3 \quad \text{and} \quad b = 3. \][/tex]

Among the given options:
- [tex]\(a = 0, b = 0\)[/tex]
- [tex]\(a = 3, b = 3\)[/tex]
- [tex]\(a = 4, b = 4\)[/tex]
- [tex]\(a = 5, b = 5\)[/tex]

The correct answer is:

[tex]\[ a = 3, b = 3. \][/tex]