The point [tex]\( P(x, y) \)[/tex], [tex]\( A(4, 3) \)[/tex], and [tex]\( B(-1, -3) \)[/tex] are such that [tex]\( PA = PB \)[/tex].

Given: [tex]\( 10x - 12y - 15 = 0 \)[/tex]

---

For consistency, LaTeX has been used for all variables and equations. The original problem statement has been clarified.



Answer :

Alright! Let's go through the problem step-by-step to find the point [tex]\( P(x, y) \)[/tex] such that the distances from [tex]\( P \)[/tex] to [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are equal, and [tex]\( P \)[/tex] lies on the given line [tex]\( 10x - 12y - 15 = 0 \)[/tex].

Given points:
- [tex]\( A = (4, 3) \)[/tex]
- [tex]\( B = (-1, -3) \)[/tex]
- The equation of the line: [tex]\( 10x - 12y - 15 = 0 \)[/tex]

We are asked to find point [tex]\( P(x, y) \)[/tex] such that:
1. [tex]\( PA = PB \)[/tex]
2. Point [tex]\( P \)[/tex] satisfies the line equation [tex]\( 10x - 12y - 15 = 0 \)[/tex]

### Step 1: Establish the distance equality

Firstly, we'll use the distance formula to express [tex]\( PA \)[/tex] and [tex]\( PB \)[/tex]:

[tex]\[ PA = \sqrt{(x - 4)^2 + (y - 3)^2} \][/tex]

[tex]\[ PB = \sqrt{(x + 1)^2 + (y + 3)^2} \][/tex]

### Step 2: Equate the distances

Given [tex]\( PA = PB \)[/tex], we can set up the following equation:

[tex]\[ \sqrt{(x - 4)^2 + (y - 3)^2} = \sqrt{(x + 1)^2 + (y + 3)^2} \][/tex]

Square both sides to eliminate the square roots:

[tex]\[ (x - 4)^2 + (y - 3)^2 = (x + 1)^2 + (y + 3)^2 \][/tex]

### Step 3: Expand both sides

Expand the expressions:

[tex]\[ (x^2 - 8x + 16) + (y^2 - 6y + 9) = (x^2 + 2x + 1) + (y^2 + 6y + 9) \][/tex]

Simplify by combining like terms:

[tex]\[ x^2 - 8x + 16 + y^2 - 6y + 9 = x^2 + 2x + 1 + y^2 + 6y + 9 \][/tex]

Remove [tex]\( x^2 \)[/tex] and [tex]\( y^2 \)[/tex] from both sides, since they are equal:

[tex]\[ -8x + 16 - 6y + 9 = 2x + 1 + 6y + 9 \][/tex]

Combine all constant terms:

[tex]\[ -8x - 6y + 25 = 2x + 6y + 10 \][/tex]

Combine like terms involving [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:

[tex]\[ -8x - 2x - 6y - 6y = 10 - 25 \][/tex]

Simplify further:

[tex]\[ -10x - 12y = -15 \][/tex]

Which simplifies to:

[tex]\[ 10x + 12y = 15 \][/tex]

### Step 4: Incorporate the given line equation

Given point [tex]\( P \)[/tex] lies on the line [tex]\( 10x - 12y - 15 = 0 \)[/tex], this is already our second equation.

Thus, the solution for [tex]\( P \)[/tex] should satisfy:

1. [tex]\( 10x + 12y = 15 \)[/tex]
2. [tex]\( 10x - 12y - 15 = 0 \)[/tex]

### Step 5: Solve the system of equations

Add the two equations:
[tex]\[ (10x + 12y) + (10x - 12y) = 15 + 15 \][/tex]

[tex]\[ 20x = 30 \][/tex]

[tex]\[ x = \frac{30}{20} = \frac{3}{2} \][/tex]

Substitute [tex]\( x = \frac{3}{2} \)[/tex] back into the line equation [tex]\( 10x - 12y - 15 = 0 \)[/tex]:

[tex]\[ 10 \left(\frac{3}{2}\right) - 12y - 15 = 0 \][/tex]

[tex]\[ 15 - 12y - 15 = 0 \][/tex]

Solve for [tex]\( y \)[/tex]:

[tex]\[ -12y = 0 \][/tex]

[tex]\[ y = 0 \][/tex]

Therefore, the point [tex]\( P \)[/tex] is:

[tex]\[ \left( \frac{3}{2}, 0 \right) \][/tex]