Find the gradients of the lines joining the following pairs of points.

[tex]\[
\begin{tabular}{lr}
1. (9, 7), (2, 5) & 2. (2, 5), (4, 8) \\
3. (5, 3), (0, 0) & 4. (6, 1), (1, 5) \\
5. (0, 4), (3, 0) & 6. (-3, 2), (4, 4) \\
7. (2, 3), (6, -5) & 8. (-4, 3), (8, -6) \\
9. (-4, -4), (-1, 5) & 10. (7, -2), (-1, 2) \\
\end{tabular}
\][/tex]



Answer :

To find the gradients (slopes) of the lines joining each pair of points, we use the gradient formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
where [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] are the coordinates of the two points.

Let's calculate the gradients step by step for each pair of points.

1. (9, 7) and (2, 5):
[tex]\[ m = \frac{5 - 7}{2 - 9} = \frac{-2}{-7} = \frac{2}{7} \approx 0.2857 \][/tex]

2. (2, 5) and (4, 8):
[tex]\[ m = \frac{8 - 5}{4 - 2} = \frac{3}{2} = 1.5 \][/tex]

3. (5, 3) and (0, 0):
[tex]\[ m = \frac{0 - 3}{0 - 5} = \frac{-3}{-5} = \frac{3}{5} = 0.6 \][/tex]

4. (6, 1) and (1, 5):
[tex]\[ m = \frac{5 - 1}{1 - 6} = \frac{4}{-5} = -0.8 \][/tex]

5. (0, 4) and (3, 0):
[tex]\[ m = \frac{0 - 4}{3 - 0} = \frac{-4}{3} \approx -1.3333 \][/tex]

6. (-3, 2) and (4, 4):
[tex]\[ m = \frac{4 - 2}{4 - (-3)} = \frac{2}{7} \approx 0.2857 \][/tex]

7. (2, 3) and (6, -5):
[tex]\[ m = \frac{-5 - 3}{6 - 2} = \frac{-8}{4} = -2 \][/tex]

8. (-4, 3) and (8, -6):
[tex]\[ m = \frac{-6 - 3}{8 - (-4)} = \frac{-9}{12} = \frac{-3}{4} = -0.75 \][/tex]

9. (-4, -4) and (-1, 5):
[tex]\[ m = \frac{5 - (-4)}{-1 - (-4)} = \frac{9}{3} = 3 \][/tex]

10. (7, -2) and (-1, 2):
[tex]\[ m = \frac{2 - (-2)}{-1 - 7} = \frac{4}{-8} = -0.5 \][/tex]

Therefore, the gradients of the lines joining these pairs of points are:
[tex]\[ [0.2857, 1.5, 0.6, -0.8, -1.3333, 0.2857, -2, -0.75, 3, -0.5] \][/tex]

These values correspond to the calculated gradients for each respective pair of points.