Numerical problems:

a. If the specific heat capacity of copper is [tex]$380 \, J \, kg^{-1} \, ^{\circ}C^{-1}$[/tex], what is the thermal capacity of [tex]$5 \, kg$[/tex] of copper?

(Hint: thermal capacity [tex]( C )= m \times s[/tex])

Ans: [tex]$1.9 \times 10^3 \, J \, ^{\circ}C^{-1}$[/tex]



Answer :

To solve the problem of finding the thermal capacity of 5 kg of copper with a specific heat capacity of 380 J/(kg * °C), let's follow a step-by-step approach.

### Steps to Solve:

1. Understand the formula:
The formula for thermal capacity (C) is given by:
[tex]\[ C = m \times s \][/tex]
where:
- [tex]\( m \)[/tex] is the mass of the substance (in kilograms, kg)
- [tex]\( s \)[/tex] is the specific heat capacity (in joules per kilogram per degree Celsius, J/(kg °C))

2. Identify the given values:
- Mass of copper, [tex]\( m \)[/tex]: 5 kg
- Specific heat capacity of copper, [tex]\( s \)[/tex]: 380 J/(kg
°C)

3. Substitute the given values into the formula:
[tex]\[ C = 5 \, \text{kg} \times 380 \, \text{J/(kg * °C)} \][/tex]

4. Perform the multiplication:
[tex]\[ C = 5 \times 380 \][/tex]

5. Calculate the product:
[tex]\[ C = 1900 \, \text{J/°C} \][/tex]

### Conclusion:
The thermal capacity of 5 kg of copper, given its specific heat capacity is 380 J/(kg * °C), is:
[tex]\[ 1900 \, \text{J/°C} \][/tex]

This matches the provided answer of [tex]\(1.9 \times 10^3 \, \text{J/°C}\)[/tex].