Factor out the GCF from the polynomial.

[tex]\[ 30y^6 + 5y^2 \][/tex]

[tex]\[ 30y^6 + 5y^2 = \square \][/tex]

(Simplify your answer.)



Answer :

To factor out the greatest common factor (GCF) from the polynomial [tex]\(30y^6 + 5y^2\)[/tex], follow these steps:

1. Identify the GCF of the coefficients:
- The coefficients in the polynomial are 30 and 5.
- The greatest common factor of 30 and 5 is 5.

2. Identify the lowest power of [tex]\( y \)[/tex]:
- The exponents of [tex]\( y \)[/tex] in the terms are 6 and 2.
- The lowest power of [tex]\( y \)[/tex] is [tex]\( y^2 \)[/tex].

3. Factor out the GCF:
- Factor 5 and [tex]\( y^2 \)[/tex] out of each term in the polynomial.

So, let's write down the original polynomial and factor out [tex]\( 5y^2 \)[/tex]:

[tex]\[ 30y^6 + 5y^2 \][/tex]

Factoring out [tex]\( 5y^2 \)[/tex]:

[tex]\[ 30y^6 + 5y^2 = 5y^2(6y^4 + 1) \][/tex]

4. Simplify the expression inside the parentheses to confirm it’s correct:
- Distribute [tex]\( 5y^2 \)[/tex] back into [tex]\( 6y^4 + 1 \)[/tex] to check:

[tex]\[ 5y^2(6y^4 + 1) = 5y^2 \cdot 6y^4 + 5y^2 \cdot 1 = 30y^6 + 5y^2 \][/tex]

So, the polynomial [tex]\(30y^6 + 5y^2\)[/tex] factored with the GCF is:

[tex]\[ 30y^6 + 5y^2 = 5y^2 (6y^4 + 1) \][/tex]

This is the simplified answer.