What trigonometric expression can be used to find the value of [tex]$x$[/tex]?

Replace [tex]$a$[/tex] and [tex][tex]$b$[/tex][/tex] with the correct values.

[tex]\frac{\square}{\square}[/tex]

[tex]\sqrt{1}[/tex]

[tex]\square^0[/tex]

4

[tex]\frac{1}{6}[/tex]

[tex]\leq[/tex]

[tex]\geq[/tex]

[tex]\pi[/tex]

[tex]\varepsilon[/tex]

[tex]\rho[/tex]

2

[tex]\varphi[/tex]

sin cos

csc sec

[tex]\tan (b)[/tex]



Answer :

To find the value of [tex]\( x \)[/tex] using a trigonometric expression, we can use the tangent function. In this case, we specifically need the tangent of [tex]\( \frac{a}{b} \)[/tex]. Here's the detailed step-by-step solution:

1. Identify the variables and values:
- Let [tex]\( a \)[/tex] and [tex]\( b \)[/tex] be given values.
- From the results, we have [tex]\( a = 1 \)[/tex] and [tex]\( b = 1 \)[/tex].

2. Set up the trigonometric expression:
- We need to find [tex]\( \tan \left(\frac{a}{b}\right) \)[/tex].

3. Determine [tex]\( \frac{a}{b} \)[/tex]:
- Since both [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are equal to [tex]\( 1 \)[/tex], [tex]\( \frac{a}{b} = \frac{1}{1} = 1 \)[/tex].

4. Calculate [tex]\( \tan(1) \)[/tex]:
- Use this result to find the tangent of 1 radian.
- Note that the value for [tex]\( \tan(1) \approx 1.5574077246549023 \)[/tex].

Thus, the trigonometric expression used to find the value of [tex]\( x \)[/tex] is [tex]\( \tan \left(\frac{a}{b}\right) \)[/tex]. Given that [tex]\( \frac{a}{b} \)[/tex] equals [tex]\( 1 \)[/tex], the value of [tex]\( x \)[/tex] is approximately [tex]\( 1.5574077246549023 \)[/tex].

So the final answer is:
[tex]\[ \tan \left(\frac{1}{1}\right) = 1.5574077246549023 \][/tex]