Which of the following is true?

A. [tex]1.436 \ \textgreater \ \frac{25}{2}[/tex]
B. [tex]1.75 \ \textgreater \ \frac{3}{2}[/tex]
C. [tex]0.25 \neq \frac{1}{4}[/tex]
D. [tex]0.2185 = \frac{1}{3}[/tex]



Answer :

Let's go through each comparison step-by-step:

1. First Comparison:
[tex]\[ 1.436 > \frac{25}{2} \][/tex]
Here, we need to compare 1.436 with [tex]\( \frac{25}{2} \)[/tex]. The value of [tex]\( \frac{25}{2} \)[/tex] is 12.5.
[tex]\[ 1.436 < 12.5 \][/tex]
Therefore, the statement [tex]\( 1.436 > \frac{25}{2} \)[/tex] is False.

2. Second Comparison:
[tex]\[ 1.75 > \frac{3}{2} \][/tex]
Here, we need to compare 1.75 with [tex]\( \frac{3}{2} \)[/tex]. The value of [tex]\( \frac{3}{2} \)[/tex] is 1.5.
[tex]\[ 1.75 > 1.5 \][/tex]
Therefore, the statement [tex]\( 1.75 > \frac{3}{2} \)[/tex] is True.

3. Third Comparison:
[tex]\[ 0.25 \neq \frac{1}{4} \][/tex]
Here, we need to compare 0.25 with [tex]\( \frac{1}{4} \)[/tex]. The value of [tex]\( \frac{1}{4} \)[/tex] is 0.25.
[tex]\[ 0.25 = 0.25 \][/tex]
Since 0.25 is equal to [tex]\( \frac{1}{4} \)[/tex], the statement [tex]\( 0.25 \neq \frac{1}{4} \)[/tex] is False.

4. Fourth Comparison:
[tex]\[ 0.2185 = \frac{1}{3} \][/tex]
Here, we need to compare 0.2185 with [tex]\( \frac{1}{3} \)[/tex]. The value of [tex]\( \frac{1}{3} \)[/tex] is approximately 0.3333.
[tex]\[ 0.2185 \neq 0.3333 \][/tex]
Therefore, the statement [tex]\( 0.2185 = \frac{1}{3} \)[/tex] is False.

So, summarizing, the true statements are evaluated as follows:
1. [tex]\( 1.436 > \frac{25}{2} \)[/tex] is False.
2. [tex]\( 1.75 > \frac{3}{2} \)[/tex] is True.
3. [tex]\( 0.25 \neq \frac{1}{4} \)[/tex] is False.
4. [tex]\( 0.2185 = \frac{1}{3} \)[/tex] is False.

Hence, the correct and only true statement is:
[tex]\[ 1.75 > \frac{3}{2} \][/tex]
So the result is:
[tex]\[ (False, True, False, False) \][/tex]