Answer :
To solve for the entries [tex]\( c_{41} \)[/tex] in matrices [tex]\( C \)[/tex] and [tex]\( D \)[/tex], we need to understand the operations involved in the given expressions.
1. First, we will evaluate Matrix [tex]\( C \)[/tex]:
[tex]\[ C = (A - B) + A \][/tex]
This expression can be broken down into two parts:
- Calculate [tex]\( A - B \)[/tex]
- Sum the result with [tex]\( A \)[/tex]
2. To find the value for [tex]\( c_{41} \)[/tex] in [tex]\( C \)[/tex], which is the entry in the 4th row and 1st column of [tex]\( C \)[/tex], we perform the following steps based on matrix indices:
3. We will then find [tex]\( c_{41} \)[/tex] in the expression:
[tex]\[ D = (A + B) - A \][/tex]
This expression simplifies directly:
[tex]\[ D = B \][/tex]
Let’s input the correct values in the boxes given the final results:
[tex]\[ A=\left[\begin{array}{ccc} -5 & 3 & 8 \\ 3 & 6 & -5 \\ 5 & -9 & 0 \\ 7 & 3 & 4 \end{array}\right] \quad B=\left[\begin{array}{ccc} -7 & -8 & -5 \\ 7 & 9 & 2 \\ 2 & 5 & -7 \\ 2 & 8 & -7 \end{array}\right] \][/tex]
If matrix [tex]\( C \)[/tex] represents [tex]\( (A - B) + A \)[/tex]:
[tex]\[ C = \left[\begin{array}{ccc} 2 & 11 & 13 \\ -4 & -3 & -7 \\ 3 & -14 & 7 \\ 12 & -4 & 11 \end{array}\right] \][/tex]
If matrix [tex]\( D \)[/tex] represents [tex]\( (A + B) - A \)[/tex]:
[tex]\[ D = B = \left[\begin{array}{ccc} -7 & -8 & -5 \\ 7 & 9 & 2 \\ 2 & 5 & -7 \\ 2 & 8 & -7 \end{array}\right] \][/tex]
Thus, the entry [tex]\( c_{41} \)[/tex] in [tex]\( C \)[/tex] is:
[tex]\[ 12 \][/tex]
And the corresponding entry in [tex]\( D \)[/tex] is:
[tex]\[ 2 \][/tex]
So, the answers are:
If matrix [tex]\( C \)[/tex] represents [tex]\( (A-B) + A \)[/tex], the value of the entry represented by [tex]\( c_{41} \)[/tex] is [tex]\( \boxed{12} \)[/tex] and the corresponding entry in [tex]\( (A+B)-A \)[/tex] is [tex]\( \boxed{2} \)[/tex].
1. First, we will evaluate Matrix [tex]\( C \)[/tex]:
[tex]\[ C = (A - B) + A \][/tex]
This expression can be broken down into two parts:
- Calculate [tex]\( A - B \)[/tex]
- Sum the result with [tex]\( A \)[/tex]
2. To find the value for [tex]\( c_{41} \)[/tex] in [tex]\( C \)[/tex], which is the entry in the 4th row and 1st column of [tex]\( C \)[/tex], we perform the following steps based on matrix indices:
3. We will then find [tex]\( c_{41} \)[/tex] in the expression:
[tex]\[ D = (A + B) - A \][/tex]
This expression simplifies directly:
[tex]\[ D = B \][/tex]
Let’s input the correct values in the boxes given the final results:
[tex]\[ A=\left[\begin{array}{ccc} -5 & 3 & 8 \\ 3 & 6 & -5 \\ 5 & -9 & 0 \\ 7 & 3 & 4 \end{array}\right] \quad B=\left[\begin{array}{ccc} -7 & -8 & -5 \\ 7 & 9 & 2 \\ 2 & 5 & -7 \\ 2 & 8 & -7 \end{array}\right] \][/tex]
If matrix [tex]\( C \)[/tex] represents [tex]\( (A - B) + A \)[/tex]:
[tex]\[ C = \left[\begin{array}{ccc} 2 & 11 & 13 \\ -4 & -3 & -7 \\ 3 & -14 & 7 \\ 12 & -4 & 11 \end{array}\right] \][/tex]
If matrix [tex]\( D \)[/tex] represents [tex]\( (A + B) - A \)[/tex]:
[tex]\[ D = B = \left[\begin{array}{ccc} -7 & -8 & -5 \\ 7 & 9 & 2 \\ 2 & 5 & -7 \\ 2 & 8 & -7 \end{array}\right] \][/tex]
Thus, the entry [tex]\( c_{41} \)[/tex] in [tex]\( C \)[/tex] is:
[tex]\[ 12 \][/tex]
And the corresponding entry in [tex]\( D \)[/tex] is:
[tex]\[ 2 \][/tex]
So, the answers are:
If matrix [tex]\( C \)[/tex] represents [tex]\( (A-B) + A \)[/tex], the value of the entry represented by [tex]\( c_{41} \)[/tex] is [tex]\( \boxed{12} \)[/tex] and the corresponding entry in [tex]\( (A+B)-A \)[/tex] is [tex]\( \boxed{2} \)[/tex].