(a) Rewrite each number in standard notation. Circle this answer on your supporting work (the PDF you will upload at the end of the quiz).

(b) Calculate the answer. Give your final answer in scientific notation, rounding to one decimal place if necessary.

[tex]\[
\left(6.0 \times 10^{-3}\right) \times \left(4.00 \times 10^{-6}\right)
\][/tex]

Note: Your answer is assumed to be reduced to the highest power possible.

Your Answer:

[tex]\[
\square
\][/tex]

[tex]\[
\square
\][/tex]



Answer :

### Step-by-Step Solution

Part (a): Rewrite each number in standard notation.

We start by converting the numbers from scientific notation to standard notation.

1. [tex]\(6.0 \times 10^{-3}\)[/tex]
[tex]\[ 6.0 \times 10^{-3} = 0.006 \][/tex]

2. [tex]\(4.00 \times 10^{-6}\)[/tex]
[tex]\[ 4.00 \times 10^{-6} = 0.000004 \][/tex]

So, in standard notation, the numbers are:
[tex]\[ 6.0 \times 10^{-3} = 0.006 \][/tex]
[tex]\[ 4.00 \times 10^{-6} = 0.000004 \][/tex]

Part (b): Calculate the answer.

Next, we multiply these two numbers.

[tex]\[ 0.006 \times 0.000004 \][/tex]

Performing the multiplication:

[tex]\[ 0.006 \times 0.000004 = 2.4 \times 10^{-8} \][/tex]

To present our answer in scientific notation, we ensure it is rounded to one decimal place if necessary:

[tex]\[ 2.4 \times 10^{-8} \][/tex]

Thus, our final result in scientific notation is:
[tex]\[ \boxed{2.4 \times 10^{-8}} \][/tex]