A bicycle has a momentum of [tex]$36 \, \text{kg} \cdot \text{m/s}$[/tex] and a velocity of [tex]$4 \, \text{m/s}$[/tex]. What is the mass of the bicycle?

A. [tex]9 \, \text{kg}[/tex]
B. [tex]32 \, \text{kg}[/tex]
C. [tex]40 \, \text{kg}[/tex]
D. [tex]144 \, \text{kg}[/tex]



Answer :

To determine the mass of the bicycle, we can use the relationship between momentum (p), mass (m), and velocity (v). The formula for momentum is given by:

[tex]\[ p = m \cdot v \][/tex]

Where:
- [tex]\( p \)[/tex] is the momentum
- [tex]\( m \)[/tex] is the mass
- [tex]\( v \)[/tex] is the velocity

Given:
- The momentum [tex]\( p = 36 \, \text{kg} \cdot \text{m/s} \)[/tex]
- The velocity [tex]\( v = 4 \, \text{m/s} \)[/tex]

We need to solve for the mass [tex]\( m \)[/tex]. Rearranging the formula to solve for [tex]\( m \)[/tex], we get:

[tex]\[ m = \frac{p}{v} \][/tex]

Substitute the given values into this equation:

[tex]\[ m = \frac{36 \, \text{kg} \cdot \text{m/s}}{4 \, \text{m/s}} \][/tex]

When we perform the division, we get:

[tex]\[ m = 9 \, \text{kg} \][/tex]

Therefore, the mass of the bicycle is:

[tex]\[ \boxed{9 \, \text{kg}} \][/tex]