Answer :

To determine how much the picture needs to be trimmed to fit into the frame, let us follow these steps:

1. Convert both measurements to improper fractions:

- For the original width of the picture, which is [tex]\(7 \frac{3}{5} \)[/tex]:
- First convert [tex]\(7 \frac{3}{5}\)[/tex] to an improper fraction:
[tex]\[ 7 \cdot 5 + 3 = 35 + 3 = 38 \][/tex]
So,
[tex]\[ 7 \frac{3}{5} = \frac{38}{5} \][/tex]

- For the width of the frame, which is [tex]\(7 \frac{3}{10}\)[/tex]:
- Convert [tex]\(7 \frac{3}{10}\)[/tex] to an improper fraction:
[tex]\[ 7 \cdot 10 + 3 = 70 + 3 = 73 \][/tex]
So,
[tex]\[ 7 \frac{3}{10} = \frac{73}{10} \][/tex]

2. Convert the improper fractions to decimal form:

- The original width of the picture:
[tex]\[ \frac{38}{5} = 38 \div 5 = 7.6 \, \text{cm} \][/tex]

- The width of the frame:
[tex]\[ \frac{73}{10} = 73 \div 10 = 7.3 \, \text{cm} \][/tex]

3. Calculate the trimming amount:

- Subtract the width of the frame from the original width of the picture:
[tex]\[ 7.6 \, \text{cm} - 7.3 \, \text{cm} = 0.3 \, \text{cm} \][/tex]

Thus, the picture should be trimmed by [tex]\(0.3 \, \text{cm}\)[/tex] to fit into the frame.