Answer :
Sure, let me walk you through the steps to solve the expression [tex]\( (a + b) \cdot c - d \)[/tex] in a detailed manner.
### Step-by-Step Solution
1. Step 1: Calculate [tex]\(a + b\)[/tex]
First, add the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex].
[tex]\[ \text{sum\_ab} = a + b \][/tex]
2. Step 2: Multiply the Sum by [tex]\(c\)[/tex]
Next, take the result from Step 1 and multiply it by [tex]\(c\)[/tex].
[tex]\[ \text{product\_abc} = \text{sum\_ab} \cdot c = (a + b) \cdot c \][/tex]
3. Step 3: Subtract [tex]\(d\)[/tex]
Finally, subtract [tex]\(d\)[/tex] from the result obtained in Step 2.
[tex]\[ \text{result} = \text{product\_abc} - d \][/tex]
4. Step 4: Summarize the final expression
Combining all the steps, the final result will be:
[tex]\[ \text{result} = (a + b) \cdot c - d \][/tex]
Let's use some example values to demonstrate:
- Suppose [tex]\(a = 2\)[/tex]
- [tex]\(b = 3\)[/tex]
- [tex]\(c = 4\)[/tex]
- [tex]\(d = 5\)[/tex]
Calculations:
1. Calculate [tex]\(a + b\)[/tex]:
[tex]\[ a + b = 2 + 3 = 5 \][/tex]
2. Multiply by [tex]\(c\)[/tex]:
[tex]\[ (a + b) \cdot c = 5 \cdot 4 = 20 \][/tex]
3. Subtract [tex]\(d\)[/tex]:
[tex]\[ 20 - 5 = 15 \][/tex]
So, the final result with these values would be:
[tex]\[ 15 \][/tex]
### General Formula
In general terms, if you know the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], [tex]\(c\)[/tex], and [tex]\(d\)[/tex], you can always use the steps outlined above to find the result of the expression [tex]\( (a + b) \cdot c - d \)[/tex].
### Step-by-Step Solution
1. Step 1: Calculate [tex]\(a + b\)[/tex]
First, add the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex].
[tex]\[ \text{sum\_ab} = a + b \][/tex]
2. Step 2: Multiply the Sum by [tex]\(c\)[/tex]
Next, take the result from Step 1 and multiply it by [tex]\(c\)[/tex].
[tex]\[ \text{product\_abc} = \text{sum\_ab} \cdot c = (a + b) \cdot c \][/tex]
3. Step 3: Subtract [tex]\(d\)[/tex]
Finally, subtract [tex]\(d\)[/tex] from the result obtained in Step 2.
[tex]\[ \text{result} = \text{product\_abc} - d \][/tex]
4. Step 4: Summarize the final expression
Combining all the steps, the final result will be:
[tex]\[ \text{result} = (a + b) \cdot c - d \][/tex]
Let's use some example values to demonstrate:
- Suppose [tex]\(a = 2\)[/tex]
- [tex]\(b = 3\)[/tex]
- [tex]\(c = 4\)[/tex]
- [tex]\(d = 5\)[/tex]
Calculations:
1. Calculate [tex]\(a + b\)[/tex]:
[tex]\[ a + b = 2 + 3 = 5 \][/tex]
2. Multiply by [tex]\(c\)[/tex]:
[tex]\[ (a + b) \cdot c = 5 \cdot 4 = 20 \][/tex]
3. Subtract [tex]\(d\)[/tex]:
[tex]\[ 20 - 5 = 15 \][/tex]
So, the final result with these values would be:
[tex]\[ 15 \][/tex]
### General Formula
In general terms, if you know the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], [tex]\(c\)[/tex], and [tex]\(d\)[/tex], you can always use the steps outlined above to find the result of the expression [tex]\( (a + b) \cdot c - d \)[/tex].