Answer :

Sure, let me walk you through the steps to solve the expression [tex]\( (a + b) \cdot c - d \)[/tex] in a detailed manner.

### Step-by-Step Solution

1. Step 1: Calculate [tex]\(a + b\)[/tex]

First, add the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex].

[tex]\[ \text{sum\_ab} = a + b \][/tex]

2. Step 2: Multiply the Sum by [tex]\(c\)[/tex]

Next, take the result from Step 1 and multiply it by [tex]\(c\)[/tex].

[tex]\[ \text{product\_abc} = \text{sum\_ab} \cdot c = (a + b) \cdot c \][/tex]

3. Step 3: Subtract [tex]\(d\)[/tex]

Finally, subtract [tex]\(d\)[/tex] from the result obtained in Step 2.

[tex]\[ \text{result} = \text{product\_abc} - d \][/tex]

4. Step 4: Summarize the final expression

Combining all the steps, the final result will be:

[tex]\[ \text{result} = (a + b) \cdot c - d \][/tex]

Let's use some example values to demonstrate:

- Suppose [tex]\(a = 2\)[/tex]
- [tex]\(b = 3\)[/tex]
- [tex]\(c = 4\)[/tex]
- [tex]\(d = 5\)[/tex]

Calculations:

1. Calculate [tex]\(a + b\)[/tex]:
[tex]\[ a + b = 2 + 3 = 5 \][/tex]

2. Multiply by [tex]\(c\)[/tex]:
[tex]\[ (a + b) \cdot c = 5 \cdot 4 = 20 \][/tex]

3. Subtract [tex]\(d\)[/tex]:
[tex]\[ 20 - 5 = 15 \][/tex]

So, the final result with these values would be:
[tex]\[ 15 \][/tex]

### General Formula
In general terms, if you know the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], [tex]\(c\)[/tex], and [tex]\(d\)[/tex], you can always use the steps outlined above to find the result of the expression [tex]\( (a + b) \cdot c - d \)[/tex].