Simplify these expressions:

a) [tex]x \times x \times x \times y \times y[/tex]

b) [tex]2 \times x \times x \times 3 \times y \times y \times y[/tex]



Answer :

Let's simplify the given expressions step-by-step.

### Part (a): Simplify [tex]\( x \times x \times x \times y \times y \)[/tex]

To simplify this expression, we will group like terms together and use the properties of exponents.

1. Write the expression with grouped like terms:
[tex]\[ x \times x \times x \times y \times y \][/tex]

2. Group the [tex]\( x \)[/tex] terms together and the [tex]\( y \)[/tex] terms together:
[tex]\[ (x \times x \times x) \times (y \times y) \][/tex]

3. Use the property of exponents [tex]\( a^m \times a^n = a^{m+n} \)[/tex]:
[tex]\( x \times x \times x = x^3 \)[/tex]
and
[tex]\( y \times y = y^2 \)[/tex]

4. Combine the results:
[tex]\[ x^3 \times y^2 \][/tex]

Hence, the simplified form of [tex]\( x \times x \times x \times y \times y \)[/tex] is:
[tex]\[ x^3 y^2 \][/tex]

### Part (b): Simplify [tex]\( 2 \times x \times x \times 3 \times y \times y \times y \)[/tex]

Similarly, we will simplify this expression by grouping like terms together and using properties of exponents and multiplication.

1. Write the expression with grouped like terms:
[tex]\[ 2 \times x \times x \times 3 \times y \times y \times y \][/tex]

2. Group the constants, the [tex]\( x \)[/tex] terms, and the [tex]\( y \)[/tex] terms together:
[tex]\[ (2 \times 3) \times (x \times x) \times (y \times y \times y) \][/tex]

3. Multiply the constants together:
[tex]\[ 2 \times 3 = 6 \][/tex]

4. Use the property of exponents [tex]\( a^m \times a^n = a^{m+n} \)[/tex]:
[tex]\( x \times x = x^2 \)[/tex]
and
[tex]\( y \times y \times y = y^3 \)[/tex]

5. Combine the results:
[tex]\[ 6 \times x^2 \times y^3 \][/tex]

Hence, the simplified form of [tex]\( 2 \times x \times x \times 3 \times y \times y \times y \)[/tex] is:
[tex]\[ 6 x^2 y^3 \][/tex]

The final simplified forms for the expressions are:
a) [tex]\( x^3 y^2 \)[/tex]
b) [tex]\( 6 x^2 y^3 \)[/tex]