Write each expression under the correct category that it simplifies to.

[tex]\[
\begin{array}{c}
-(8 \div 2) \\
-5 \times (-4) \\
6 \div (-3) \\
-10 \div (-10) \\
-25 \times (-4) \\
-21 \div 7
\end{array}
\][/tex]

\begin{tabular}{|l|l|}
\hline
A negative number & A positive number \\
\hline
& \\
& \\
\hline
\end{tabular}



Answer :

Sure, let’s work through the process step-by-step and classify each of the expressions given.

### Step-by-Step Simplification and Classification:

1. Expression: [tex]\( -(8 \div 2) \)[/tex]
- Simplification: [tex]\( 8 \div 2 = 4 \)[/tex]
- Negating it: [tex]\( -4 \)[/tex]
- Classification: Negative number

2. Expression: [tex]\( -5 \times (-4) \)[/tex]
- Simplification: Product of two negative numbers [tex]\( -5 \times -4 = 20 \)[/tex]
- Classification: Positive number

3. Expression: [tex]\( 6 \div (-3) \)[/tex]
- Simplification: [tex]\( 6 \div -3 = -2 \)[/tex]
- Classification: Negative number

4. Expression: [tex]\( -10 \div (-10) \)[/tex]
- Simplification: Division of two negative numbers [tex]\( -10 \div -10 = 1 \)[/tex]
- Classification: Positive number

5. Expression: [tex]\( -25 \times (-4) \)[/tex]
- Simplification: Product of two negative numbers [tex]\( -25 \times -4 = 100 \)[/tex]
- Classification: Positive number

6. Expression: [tex]\( -21 \div 7 \)[/tex]
- Simplification: [tex]\( -21 \div 7 = -3 \)[/tex]
- Classification: Negative number

### Categorized Results:

[tex]\[ \begin{array}{c} -(8 \div 2) = -4 \\ 6 \div(-3) = -2 \\ -21 \div 7 = -3 \\ \end{array} \][/tex]

[tex]\[ \begin{array}{c} -5 \times(-4) = 20 \\ -10 \div(-10) = 1 \\ -25 \times(-4) = 100 \\ \end{array} \][/tex]

### Final Classification in a Table:

[tex]\[ \begin{array}{|l|l|} \hline \text{A negative number} & \text{A positive number} \\ \hline -(8 \div 2) & -5 \times (-4) \\ 6 \div (-3) & -10 \div (-10) \\ -21 \div 7 & -25 \times (-4) \\ \hline \end{array} \][/tex]