Write a function [tex]f(x)[/tex] and give a number [tex]x_0[/tex] such that [tex]f(x_0) = -3[/tex]. [tex]f(x)[/tex] is not allowed to be a constant function or the identity function [tex]f(x) = x[/tex].

[tex]x_0 = \square[/tex]

[tex]f(x) = \square[/tex]

Output: [tex]y = -3[/tex]



Answer :

Let's define a function [tex]\( f(x) \)[/tex] and find a number [tex]\( x_0 \)[/tex] such that [tex]\( f(x_0) = -3 \)[/tex]. The function is required to be neither a constant function nor the identity function [tex]\( f(x) = x \)[/tex].

### Step-by-Step Solution

1. Define the Function [tex]\( f(x) \)[/tex]:
Let's choose a linear function for [tex]\( f(x) \)[/tex] that meets the criteria. We can define [tex]\( f(x) \)[/tex] as:
[tex]\[ f(x) = 2x - 5 \][/tex]

2. Find [tex]\( x_0 \)[/tex] Such That [tex]\( f(x_0) = -3 \)[/tex]:
We want to find [tex]\( x_0 \)[/tex] such that:
[tex]\[ f(x_0) = -3 \][/tex]
Substitute [tex]\( f(x) = 2x - 5 \)[/tex] into the equation:
[tex]\[ 2x_0 - 5 = -3 \][/tex]

3. Solve for [tex]\( x_0 \)[/tex]:
To find [tex]\( x_0 \)[/tex], solve the equation:
[tex]\[ 2x_0 - 5 = -3 \][/tex]
Add 5 to both sides of the equation:
[tex]\[ 2x_0 = -3 + 5 \][/tex]
Simplify the right side:
[tex]\[ 2x_0 = 2 \][/tex]
Divide both sides by 2:
[tex]\[ x_0 = 1 \][/tex]

4. Verify the Solution:
Substitute [tex]\( x_0 = 1 \)[/tex] back into the function to verify:
[tex]\[ f(1) = 2(1) - 5 = 2 - 5 = -3 \][/tex]
This confirms that [tex]\( f(1) = -3 \)[/tex].

### Final Function and Value

- The function [tex]\( f(x) = 2x - 5 \)[/tex].
- The value [tex]\( x_0 = 1 \)[/tex].

[tex]\[ \boxed{f(x) = 2x - 5, \quad x_0 = 1, \quad y = -3} \][/tex]