Answer :

To solve the system of linear equations:

[tex]\[ \begin{cases} 2x + y = 3 \\ 3x + 5y = 1 \end{cases} \][/tex]

we can use the method of elimination or substitution. Here's a step-by-step solution using the elimination method:

1. Write the equations in standard form:
[tex]\[ 2x + y = 3 \quad \text{(Equation 1)} \][/tex]

[tex]\[ 3x + 5y = 1 \quad \text{(Equation 2)} \][/tex]

2. Eliminate one variable by making their coefficients equal:

To eliminate [tex]\( y \)[/tex], we need the coefficients of [tex]\( y \)[/tex] to be the same. We can multiply Equation 1 by 5:

[tex]\[ 5(2x + y) = 5(3) \][/tex]

Simplifying this, we get:

[tex]\[ 10x + 5y = 15 \quad \text{(Equation 3)} \][/tex]

3. Subtract Equation 2 from Equation 3:

[tex]\[ (10x + 5y) - (3x + 5y) = 15 - 1 \][/tex]

Simplifying this, we get:

[tex]\[ 7x = 14 \][/tex]

4. Solve for [tex]\( x \)[/tex]:

[tex]\[ x = \frac{14}{7} = 2 \][/tex]

5. Substitute [tex]\( x = 2 \)[/tex] back into one of the original equations to find [tex]\( y \)[/tex]:

Using Equation 1:

[tex]\[ 2(2) + y = 3 \][/tex]

Simplifying this, we get:

[tex]\[ 4 + y = 3 \][/tex]

Solving for [tex]\( y \)[/tex]:

[tex]\[ y = 3 - 4 = -1 \][/tex]

6. Solution:

Hence, the solution to the system of equations is:

[tex]\[ x = 2, \quad y = -1 \][/tex]

So the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy the given system of equations are [tex]\( x = 2 \)[/tex] and [tex]\( y = -1 \)[/tex].