Answer :
Sure, let's transform the given formula [tex]\( C = \frac{5(F - 32)}{9} \)[/tex] to make [tex]\( F \)[/tex] the subject.
### Step-by-Step Solution
1. Initial Formula:
[tex]\[ C = \frac{5(F - 32)}{9} \][/tex]
2. Eliminate the denominator on the right side:
[tex]\[ 9C = 5(F - 32) \][/tex]
3. Distribute and isolate useful terms:
[tex]\[ 9C = 5F - 160 \][/tex]
4. Isolate the term containing [tex]\( F \)[/tex] by adding 160 to both sides:
[tex]\[ 9C + 160 = 5F \][/tex]
5. Solve for [tex]\( F \)[/tex] by dividing both sides by 5:
[tex]\[ F = \frac{9C + 160}{5} \][/tex]
Now the equation [tex]\( F = \frac{9C + 160}{5} \)[/tex] is in the desired form [tex]\( \frac{aC + b}{c} \)[/tex] where [tex]\( a = 9 \)[/tex], [tex]\( b = 160 \)[/tex], and [tex]\( c = 5 \)[/tex].
### Step-by-Step Solution
1. Initial Formula:
[tex]\[ C = \frac{5(F - 32)}{9} \][/tex]
2. Eliminate the denominator on the right side:
[tex]\[ 9C = 5(F - 32) \][/tex]
3. Distribute and isolate useful terms:
[tex]\[ 9C = 5F - 160 \][/tex]
4. Isolate the term containing [tex]\( F \)[/tex] by adding 160 to both sides:
[tex]\[ 9C + 160 = 5F \][/tex]
5. Solve for [tex]\( F \)[/tex] by dividing both sides by 5:
[tex]\[ F = \frac{9C + 160}{5} \][/tex]
Now the equation [tex]\( F = \frac{9C + 160}{5} \)[/tex] is in the desired form [tex]\( \frac{aC + b}{c} \)[/tex] where [tex]\( a = 9 \)[/tex], [tex]\( b = 160 \)[/tex], and [tex]\( c = 5 \)[/tex].