Temperatures in [tex] ^{\circ}F [/tex] can be converted to [tex] ^{\circ}C [/tex] using the formula
[tex]\[ C=\frac{5(F-32)}{9} \][/tex]

Make [tex] F [/tex] the subject of the formula. Show your answer in the form [tex] \frac{aC + b}{c} [/tex] where [tex] a, b [/tex] and [tex] c [/tex] are all positive integers.



Answer :

Sure, let's transform the given formula [tex]\( C = \frac{5(F - 32)}{9} \)[/tex] to make [tex]\( F \)[/tex] the subject.

### Step-by-Step Solution

1. Initial Formula:
[tex]\[ C = \frac{5(F - 32)}{9} \][/tex]

2. Eliminate the denominator on the right side:
[tex]\[ 9C = 5(F - 32) \][/tex]

3. Distribute and isolate useful terms:
[tex]\[ 9C = 5F - 160 \][/tex]

4. Isolate the term containing [tex]\( F \)[/tex] by adding 160 to both sides:
[tex]\[ 9C + 160 = 5F \][/tex]

5. Solve for [tex]\( F \)[/tex] by dividing both sides by 5:
[tex]\[ F = \frac{9C + 160}{5} \][/tex]

Now the equation [tex]\( F = \frac{9C + 160}{5} \)[/tex] is in the desired form [tex]\( \frac{aC + b}{c} \)[/tex] where [tex]\( a = 9 \)[/tex], [tex]\( b = 160 \)[/tex], and [tex]\( c = 5 \)[/tex].