Answer :
First, let's understand the terms mentioned in the question and the table:
1. Potential Difference (measured in volts): This is the voltage applied across a conductor. The higher the volts, the greater the potential difference.
2. Flow Rate (measured in amperes): This is the current flowing through the conductor. The higher the amperes, the faster the flow rate of charges.
Given the chart for currents [tex]\(X\)[/tex] and [tex]\(Y\)[/tex]:
| Current | Volts | Amperes |
|---------|-------|---------|
| [tex]\(X\)[/tex] | 1.5 | 7.8 |
| [tex]\(Y\)[/tex] | 9 | 0.5 |
Step-by-Step Analysis:
1. Comparing Potential Difference:
- For Current [tex]\(X\)[/tex], we have a potential difference of 1.5 volts.
- For Current [tex]\(Y\)[/tex], we have a potential difference of 9 volts.
- Clearly, [tex]\(9\)[/tex] volts (for [tex]\(Y\)[/tex]) is greater than [tex]\(1.5\)[/tex] volts (for [tex]\(X\)[/tex]). Therefore, Current [tex]\(Y\)[/tex] has a greater potential difference.
2. Comparing Flow Rate:
- For Current [tex]\(X\)[/tex], the flow rate is 7.8 amperes.
- For Current [tex]\(Y\)[/tex], the flow rate is 0.5 amperes.
- Clearly, [tex]\(7.8\)[/tex] amperes (for [tex]\(X\)[/tex]) is greater than [tex]\(0.5\)[/tex] amperes (for [tex]\(Y\)[/tex]). Therefore, Current [tex]\(X\)[/tex] has charges flowing at a faster rate.
Based on these two comparisons:
- Current [tex]\(Y\)[/tex] has a greater potential difference.
- Current [tex]\(X\)[/tex] has charges flowing at a faster rate.
We can conclude which statement best describes the comparison:
Current [tex]\(Y\)[/tex] has a greater potential difference, and the charges flow at a faster rate.
Thus, the correct answer is:
Current [tex]\(Y\)[/tex] has a greater potential difference, and the charges flow at a slower rate.
1. Potential Difference (measured in volts): This is the voltage applied across a conductor. The higher the volts, the greater the potential difference.
2. Flow Rate (measured in amperes): This is the current flowing through the conductor. The higher the amperes, the faster the flow rate of charges.
Given the chart for currents [tex]\(X\)[/tex] and [tex]\(Y\)[/tex]:
| Current | Volts | Amperes |
|---------|-------|---------|
| [tex]\(X\)[/tex] | 1.5 | 7.8 |
| [tex]\(Y\)[/tex] | 9 | 0.5 |
Step-by-Step Analysis:
1. Comparing Potential Difference:
- For Current [tex]\(X\)[/tex], we have a potential difference of 1.5 volts.
- For Current [tex]\(Y\)[/tex], we have a potential difference of 9 volts.
- Clearly, [tex]\(9\)[/tex] volts (for [tex]\(Y\)[/tex]) is greater than [tex]\(1.5\)[/tex] volts (for [tex]\(X\)[/tex]). Therefore, Current [tex]\(Y\)[/tex] has a greater potential difference.
2. Comparing Flow Rate:
- For Current [tex]\(X\)[/tex], the flow rate is 7.8 amperes.
- For Current [tex]\(Y\)[/tex], the flow rate is 0.5 amperes.
- Clearly, [tex]\(7.8\)[/tex] amperes (for [tex]\(X\)[/tex]) is greater than [tex]\(0.5\)[/tex] amperes (for [tex]\(Y\)[/tex]). Therefore, Current [tex]\(X\)[/tex] has charges flowing at a faster rate.
Based on these two comparisons:
- Current [tex]\(Y\)[/tex] has a greater potential difference.
- Current [tex]\(X\)[/tex] has charges flowing at a faster rate.
We can conclude which statement best describes the comparison:
Current [tex]\(Y\)[/tex] has a greater potential difference, and the charges flow at a faster rate.
Thus, the correct answer is:
Current [tex]\(Y\)[/tex] has a greater potential difference, and the charges flow at a slower rate.