Answer :
To determine the resistance in the circuit given the voltage and current, we can use Ohm's Law. Ohm's Law states that the resistance [tex]\( R \)[/tex] in a circuit can be calculated from the voltage [tex]\( V \)[/tex] and the current [tex]\( I \)[/tex] using the formula:
[tex]\[ R = \frac{V}{I} \][/tex]
Given the values:
- Voltage [tex]\( V = 6.0 \)[/tex] volts
- Current [tex]\( I = 0.3 \)[/tex] amperes
We can plug these values into the formula:
[tex]\[ R = \frac{6.0\, \text{V}}{0.3\, \text{A}} \][/tex]
Calculating the division:
[tex]\[ R = \frac{6.0}{0.3} = 20.0\, \Omega \][/tex]
Hence, the resistance in the circuit is [tex]\( 20 \, \Omega \)[/tex].
Among the given options:
- [tex]\( 0.05 \Omega \)[/tex]
- [tex]\( 1.8 \Omega \)[/tex]
- [tex]\( 5.7 \Omega \)[/tex]
- [tex]\( 20 \Omega \)[/tex]
The correct answer is [tex]\( \mathbf{20 \, \Omega} \)[/tex].
[tex]\[ R = \frac{V}{I} \][/tex]
Given the values:
- Voltage [tex]\( V = 6.0 \)[/tex] volts
- Current [tex]\( I = 0.3 \)[/tex] amperes
We can plug these values into the formula:
[tex]\[ R = \frac{6.0\, \text{V}}{0.3\, \text{A}} \][/tex]
Calculating the division:
[tex]\[ R = \frac{6.0}{0.3} = 20.0\, \Omega \][/tex]
Hence, the resistance in the circuit is [tex]\( 20 \, \Omega \)[/tex].
Among the given options:
- [tex]\( 0.05 \Omega \)[/tex]
- [tex]\( 1.8 \Omega \)[/tex]
- [tex]\( 5.7 \Omega \)[/tex]
- [tex]\( 20 \Omega \)[/tex]
The correct answer is [tex]\( \mathbf{20 \, \Omega} \)[/tex].