Answered

Kaya collects the data shown in the table.

\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Quantity } & Value \\
\hline Voltage & [tex]$6.0 V$[/tex] \\
\hline Current & [tex]$0.3 A$[/tex] \\
\hline Resistance & \\
\hline
\end{tabular}

What is the resistance in the circuit?

A. [tex]$0.05 \Omega$[/tex]
B. [tex]$1.8 \Omega$[/tex]
C. [tex]$5.7 \Omega$[/tex]
D. [tex]$20 \Omega$[/tex]



Answer :

To determine the resistance in the circuit given the voltage and current, we can use Ohm's Law. Ohm's Law states that the resistance [tex]\( R \)[/tex] in a circuit can be calculated from the voltage [tex]\( V \)[/tex] and the current [tex]\( I \)[/tex] using the formula:

[tex]\[ R = \frac{V}{I} \][/tex]

Given the values:
- Voltage [tex]\( V = 6.0 \)[/tex] volts
- Current [tex]\( I = 0.3 \)[/tex] amperes

We can plug these values into the formula:

[tex]\[ R = \frac{6.0\, \text{V}}{0.3\, \text{A}} \][/tex]

Calculating the division:

[tex]\[ R = \frac{6.0}{0.3} = 20.0\, \Omega \][/tex]

Hence, the resistance in the circuit is [tex]\( 20 \, \Omega \)[/tex].

Among the given options:
- [tex]\( 0.05 \Omega \)[/tex]
- [tex]\( 1.8 \Omega \)[/tex]
- [tex]\( 5.7 \Omega \)[/tex]
- [tex]\( 20 \Omega \)[/tex]

The correct answer is [tex]\( \mathbf{20 \, \Omega} \)[/tex].