Which expression is the factorization of [tex]$x^2 + 10x + 21$[/tex]?

A. [tex]\((x+3)(x+7)\)[/tex]
B. [tex]\((x+4)(x+6)\)[/tex]
C. [tex]\((x+6)(x+15)\)[/tex]
D. [tex]\((x+7)(x+14)\)[/tex]



Answer :

To determine the factorization of the quadratic expression [tex]\(x^2 + 10x + 21\)[/tex], we want to express it in the form [tex]\((x + a)(x + b)\)[/tex], where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are constants.

1. Starting from the standard quadratic form [tex]\(x^2 + 10x + 21\)[/tex], we look for two numbers that both:

a. Multiply together to give the constant term [tex]\(21\)[/tex].
b. Add up to give the coefficient of the linear term, which is [tex]\(10\)[/tex].

2. Let's examine the pairs of factors of [tex]\(21\)[/tex]:
- [tex]\(1\)[/tex] and [tex]\(21\)[/tex]. Sum: [tex]\(1 + 21 = 22\)[/tex]
- [tex]\(3\)[/tex] and [tex]\(7\)[/tex]. Sum: [tex]\(3 + 7 = 10\)[/tex]
- [tex]\(-1\)[/tex] and [tex]\(-21\)[/tex]. Sum: [tex]\(-1 - 21 = -22\)[/tex]
- [tex]\(-3\)[/tex] and [tex]\(-7\)[/tex]. Sum: [tex]\(-3 - 7 = -10\)[/tex]

3. We see that the pair [tex]\(3\)[/tex] and [tex]\(7\)[/tex] multiply to [tex]\(21\)[/tex] and add up to [tex]\(10\)[/tex].

4. Therefore, the quadratic expression [tex]\(x^2 + 10x + 21\)[/tex] can be factored as:
[tex]\[ (x + 3)(x + 7) \][/tex]

Given the potential answers:
- [tex]\((x + 3)(x + 7)\)[/tex]
- [tex]\((x + 4)(x + 6)\)[/tex]
- [tex]\((x + 6)(x + 15)\)[/tex]
- [tex]\((x + 7)(x + 14)\)[/tex]

The correct factorization is:
[tex]\[ (x + 3)(x + 7) \][/tex]