Find the quotient: [tex]-\frac{10}{19} \div\left(-\frac{5}{7}\right)[/tex].

A. [tex]-\frac{70}{95}[/tex]
B. [tex]-\frac{14}{19}[/tex]
C. [tex]\frac{14}{19}[/tex]
D. [tex]\frac{70}{95}[/tex]



Answer :

To find the quotient of [tex]\( -\frac{10}{19} \div \left( -\frac{5}{7} \right) \)[/tex], follow these steps:

1. Understand Division of Fractions: Dividing by a fraction is equivalent to multiplying by its reciprocal. Therefore,
[tex]\[ -\frac{10}{19} \div \left( -\frac{5}{7} \right) = -\frac{10}{19} \times \left( -\frac{7}{5} \right) \][/tex]

2. Find the Reciprocal: The reciprocal of [tex]\( -\frac{5}{7} \)[/tex] is [tex]\( -\frac{7}{5} \)[/tex].

3. Set Up the Multiplication:
[tex]\[ -\frac{10}{19} \times -\frac{7}{5} \][/tex]

4. Multiply the Numerators: The numerator of the product is:
[tex]\[ (-10) \times (-7) = 70 \][/tex]

5. Multiply the Denominators: The denominator of the product is:
[tex]\[ 19 \times 5 = 95 \][/tex]

6. Combine the Results: So the fraction becomes:
[tex]\[ \frac{70}{95} \][/tex]

7. Simplify the Fraction:
- The greatest common divisor (GCD) of 70 and 95 is 5.
- Hence, [tex]\( 70 \div 5 = 14 \)[/tex].
- And, [tex]\( 95 \div 5 = 19 \)[/tex].

- Therefore, the simplified fraction is:
[tex]\[ \frac{70}{95} = \frac{14}{19} \][/tex]

Thus, the quotient is:

[tex]\[ \boxed{\frac{14}{19}} \][/tex]

Let's check which option matches this result:
- [tex]\( \text{A } -\frac{70}{95} \)[/tex]
- [tex]\( \text{B } -\frac{14}{19} \)[/tex]
- [tex]\( \text{C } \frac{14}{19} \)[/tex]
- [tex]\( \text{D } \frac{70}{95} \)[/tex]

The correct answer is clearly:

[tex]\[ \boxed{\text{C}} \][/tex]