The base edge of an oblique square pyramid is represented as [tex]$x$ \, \text{cm}[/tex]. If the height is [tex][tex]$9$[/tex] \, \text{cm}[/tex], what is the volume of the pyramid in terms of [tex]$x$]?

A. [tex]3x^2 \, \text{cm}^3[/tex]
B. [tex]9x^2 \, \text{cm}^3[/tex]
C. [tex]3x \, \text{cm}^3[/tex]
D. [tex]x \, \text{cm}^3[/tex]



Answer :

To find the volume of an oblique square pyramid with a base edge represented as [tex]\( x \, \text{cm} \)[/tex] and a height of [tex]\( 9 \, \text{cm} \)[/tex], we use the formula for the volume of a pyramid:

[tex]\[ V = \frac{1}{3} \times \text{base area} \times \text{height} \][/tex]

First, let's determine the base area:
- Since the base is a square with edge length [tex]\( x \, \text{cm} \)[/tex], the area of the base ([tex]\( \text{base area} \)[/tex]) is given by:

[tex]\[ \text{base area} = x^2 \][/tex]

Next, the volume of the pyramid is calculated as follows:
- Substitute the base area ([tex]\( x^2 \)[/tex]) and the height ([tex]\( 9 \, \text{cm} \)[/tex]) into the volume formula:

[tex]\[ V = \frac{1}{3} \times x^2 \times 9 \][/tex]

- Simplify this expression:

[tex]\[ V = \frac{1}{3} \times 9 \times x^2 = 3 x^2 \][/tex]

So, the volume of the pyramid in terms of [tex]\( x \)[/tex] is:

[tex]\[ 3 x^2 \, \text{cm}^3 \][/tex]

Therefore, the correct answer is:

[tex]\[ 3 x^2 \, \text{cm}^3 \][/tex]