Answer:
the maximum distance = 3.75 cm
Explanation:
To find the maximum distance the spring can be stretched without the box moving when it is released, we have to find out all the forces that work on the box.
Refer to the picture, there are 4 forces work on the box:
Given:
By applying these formulas, we can find the distance:
[tex]\boxed{w=mg}[/tex]
[tex]\boxed{f_s=\mu_sN}[/tex]
[tex]\boxed{F_{spring}=kx}[/tex]
Since the box is in an equilibrium state (not moving), then:
[tex]\Sigma F_y=0[/tex]
[tex]N-w=0[/tex]
[tex]N=w[/tex]
[tex]N=mg[/tex]
[tex]N=0.50\times9.8[/tex]
[tex]N=4.9\ N[/tex]
[tex]\Sigma F_x=0[/tex]
[tex]F_{spring}-f_s=0[/tex]
[tex]kx-\mu_sN=0[/tex]
[tex]68x-0.52\times4.9=0[/tex]
[tex]x=2.548\div68[/tex]
[tex]x=0.0375\ m[/tex]
[tex]\bf x=3.75\ cm[/tex]