Find the cost function if the marginal cost function is given by [tex]C^{\prime}(x) = x^{1/4} + 6[/tex] and 16 units cost [tex]\$132[/tex].



Answer :

To find the cost function when given the marginal cost function [tex]\( C'(x) = x^{1/4} + 6 \)[/tex] and the information that 16 units cost [tex]$132, we'll follow these steps: 1. Integrate the Marginal Cost Function: The cost function \( C(x) \) is the integral of the marginal cost function \( C'(x) \). So, we need to integrate \( x^{1/4} + 6 \). \[ C(x) = \int (x^{1/4} + 6) \, dx \] 2. Compute the Indefinite Integral: Integrate \( x^{1/4} \) and \( 6 \) separately. \[ \int x^{1/4} \, dx \] Recall that the integral of \( x^n \) is \( \frac{x^{n+1}}{n+1} \). \[ \int x^{1/4} \, dx = \frac{x^{1/4 + 1}}{1/4 + 1} = \frac{x^{5/4}}{5/4} = \frac{4}{5} x^{5/4} \] Now, integrate the constant 6: \[ \int 6 \, dx = 6x \] Combining these, we get the indefinite integral of \( C'(x) \): \[ C(x) = \frac{4}{5} x^{5/4} + 6x + C \] Here, \( C \) represents the constant of integration. 3. Determine the Constant of Integration \( C \): Use the given condition that 16 units cost $[/tex]132. This means [tex]\( C(16) = 132 \)[/tex].

Substitute [tex]\( x = 16 \)[/tex] and [tex]\( C(16) = 132 \)[/tex]:

[tex]\[ 132 = \frac{4}{5} (16)^{5/4} + 6(16) + C \][/tex]

Calculate [tex]\( (16)^{5/4} \)[/tex]:

[tex]\[ 16 = 2^4 \implies 16^{5/4} = (2^4)^{5/4} = 2^5 = 32 \][/tex]

Substitute [tex]\( 16^{5/4} = 32 \)[/tex] into the equation:

[tex]\[ 132 = \frac{4}{5} \cdot 32 + 96 + C \][/tex]

Simplify:

[tex]\[ 132 = \frac{128}{5} + 96 + C \][/tex]

Combine the terms:

[tex]\[ 132 = 25.6 + 96 + C \][/tex]

[tex]\[ 132 = 121.6 + C \][/tex]

Solve for [tex]\( C \)[/tex]:

[tex]\[ C = 132 - 121.6 = 10.4 \][/tex]

4. Write the Final Cost Function:
Substitute [tex]\( C = 10.4 \)[/tex] back into the cost function:

[tex]\[ C(x) = \frac{4}{5} x^{5/4} + 6x + 10.4 \][/tex]

Thus, the cost function is:

[tex]\[ C(x) = \frac{4}{5} x^{5/4} + 6x + 10.4 \][/tex]