madey21
Answered

[tex]$0.500 \, \text{g}$[/tex] of propane, [tex]$C_3H_8$[/tex], reacts with excess oxygen in a bomb calorimeter containing [tex]$500 \, \text{g}$[/tex] of water, initially at [tex]$20.5^{\circ} \text{C}$[/tex]. The final temperature is [tex]$29.2^{\circ} \text{C}$[/tex]. The heat capacity of the dry portion of the calorimeter is [tex]$808 \, \text{J}/{\circ} \text{C}$[/tex]. What is the enthalpy of the reaction?

Given:
- Specific heat capacity of water: [tex]$C_{H_2O} = 4.18 \, \text{J}/\text{g}\cdot{\circ}\text{C}$[/tex]
- [tex]$\Delta H = [?] \, \text{kJ}/\text{mol}$[/tex]

Enter either a [tex]$+$[/tex] or [tex]$-$[/tex] sign AND the magnitude. Do not round until the end. Use significant figures.



Answer :

Let's solve this problem step-by-step.

### Step 1: Calculate the Temperature Change

The initial temperature ([tex]\( T_i \)[/tex]) is [tex]\( 20.5^{\circ}C \)[/tex].
The final temperature ([tex]\( T_f \)[/tex]) is [tex]\( 29.2^{\circ}C \)[/tex].

The temperature change ([tex]\( \Delta T \)[/tex]) is given by:
[tex]\[ \Delta T = T_f - T_i \][/tex]

Substitute the provided temperatures:
[tex]\[ \Delta T = 29.2^{\circ}C - 20.5^{\circ}C \][/tex]
[tex]\[ \Delta T = 8.7^{\circ}C \][/tex]

### Step 2: Calculate the Heat Absorbed by the Water

The mass of water ([tex]\( m_{water} \)[/tex]) is [tex]\( 500 \, \text{g} \)[/tex].
The specific heat capacity of water ([tex]\( C_{H_2O} \)[/tex]) is [tex]\( 4.18 \, J/(g \, ^{\circ}C) \)[/tex].

The heat absorbed by the water ([tex]\( q_{water} \)[/tex]) can be calculated using the formula:
[tex]\[ q_{water} = m_{water} \times C_{H_2O} \times \Delta T \][/tex]

Substitute the values:
[tex]\[ q_{water} = 500 \, \text{g} \times 4.18 \, J/(g \, ^{\circ}C) \times 8.7^{\circ}C \][/tex]
[tex]\[ q_{water} = 18183.0 \, J \][/tex]

### Step 3: Calculate the Heat Absorbed by the Calorimeter

The heat capacity of the dry portion of the calorimeter ([tex]\( C_{calorimeter} \)[/tex]) is [tex]\( 808 \, J / ^{\circ}C \)[/tex].

The heat absorbed by the calorimeter ([tex]\( q_{calorimeter} \)[/tex]) is given by:
[tex]\[ q_{calorimeter} = C_{calorimeter} \times \Delta T \][/tex]

Substitute the values:
[tex]\[ q_{calorimeter} = 808 \, J / ^{\circ}C \times 8.7^{\circ}C \][/tex]
[tex]\[ q_{calorimeter} = 7029.6 \, J \][/tex]

### Step 4: Calculate the Total Heat Absorbed by the System

The total heat absorbed ([tex]\( q_{total} \)[/tex]) is the sum of the heat absorbed by the water and the calorimeter:
[tex]\[ q_{total} = q_{water} + q_{calorimeter} \][/tex]

Substitute the values:
[tex]\[ q_{total} = 18183.0 \, J + 7029.6 \, J \][/tex]
[tex]\[ q_{total} = 25212.6 \, J \][/tex]

### Step 5: Convert the Heat to Kilojoules

[tex]\[ q_{total \, kJ} = \frac{q_{total}}{1000} \][/tex]

Substitute the value:
[tex]\[ q_{total \, kJ} = \frac{25212.6 \, J}{1000} \][/tex]
[tex]\[ q_{total \, kJ} = 25.2126 \, kJ \][/tex]

### Step 6: Calculate the Moles of Propane

The mass of propane ([tex]\( m_{propane} \)[/tex]) is [tex]\( 0.5 \, g \)[/tex].
The molar mass of propane ([tex]\( M_{propane} \)[/tex]) is [tex]\( 44.1 \, g/mol \)[/tex].

The number of moles of propane ([tex]\( n_{propane} \)[/tex]) is given by:
[tex]\[ n_{propane} = \frac{m_{propane}}{M_{propane}} \][/tex]

Substitute the values:
[tex]\[ n_{propane} = \frac{0.5 \, g}{44.1 \, g/mol} \][/tex]
[tex]\[ n_{propane} = 0.011337868480725623 \, mol \][/tex]

### Step 7: Calculate the Enthalpy Change per Mole of Propane

The enthalpy change ([tex]\( \Delta H \)[/tex]) is given by:
[tex]\[ \Delta H = \frac{q_{total \, kJ}}{n_{propane}} \][/tex]

Substitute the values:
[tex]\[ \Delta H = \frac{25.2126 \, kJ}{0.011337868480725623 \, mol} \][/tex]
[tex]\[ \Delta H = 2223.75132 \, kJ/mol \][/tex]

### Final Answer

The enthalpy change of the reaction is [tex]\( -2223.75132 \, kJ/mol \)[/tex]. Note the negative sign, which indicates that the reaction is exothermic (heat is released).

So, the final answer with significant figures is:
[tex]\[ \boxed{-2224 \, kJ/mol} \][/tex]