Solve the quadratic equation using the quadratic formula:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

[tex]\[ 2x^2 + x - 5 = 0 \][/tex]



Answer :

To solve the quadratic equation [tex]\(2x^2 + x - 5 = 0\)[/tex] using the quadratic formula, we follow a series of steps. The quadratic formula is given by:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Here, the coefficients are:
- [tex]\(a = 2\)[/tex]
- [tex]\(b = 1\)[/tex]
- [tex]\(c = -5\)[/tex]

### Step 1: Calculate the discriminant

The discriminant [tex]\(\Delta\)[/tex] is calculated using the formula:

[tex]\[ \Delta = b^2 - 4ac \][/tex]

Plugging in the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:

[tex]\[ \Delta = 1^2 - 4(2)(-5) \][/tex]
[tex]\[ \Delta = 1 - (-40) \][/tex]
[tex]\[ \Delta = 1 + 40 \][/tex]
[tex]\[ \Delta = 41 \][/tex]

So, the discriminant is 41.

### Step 2: Calculate the roots using the quadratic formula

Using the quadratic formula:

[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]

Substitute [tex]\(\Delta = 41\)[/tex], [tex]\(a = 2\)[/tex], and [tex]\(b = 1\)[/tex]:

[tex]\[ x = \frac{-1 \pm \sqrt{41}}{2(2)} \][/tex]
[tex]\[ x = \frac{-1 \pm \sqrt{41}}{4} \][/tex]

This expression gives us two solutions, one for the plus sign ( [tex]\(+\)[/tex] ) and one for the minus sign ( [tex]\(-\)[/tex] ).

### Step 3: Compute the two solutions

First solution ([tex]\(+\)[/tex]):

[tex]\[ x_1 = \frac{-1 + \sqrt{41}}{4} \][/tex]
[tex]\[ x_1 \approx \frac{-1 + 6.403124237}{4} \][/tex]
[tex]\[ x_1 \approx \frac{5.403124237}{4} \][/tex]
[tex]\[ x_1 \approx 1.3507810593582121 \][/tex]

Second solution ([tex]\(-\)[/tex]):

[tex]\[ x_2 = \frac{-1 - \sqrt{41}}{4} \][/tex]
[tex]\[ x_2 \approx \frac{-1 - 6.403124237}{4} \][/tex]
[tex]\[ x_2 \approx \frac{-7.403124237}{4} \][/tex]
[tex]\[ x2 \approx -1.8507810593582121 \][/tex]

### Summary:

The solutions to the quadratic equation [tex]\(2x^2 + x - 5 = 0\)[/tex] are:

[tex]\[ x_1 \approx 1.3507810593582121 \][/tex]
[tex]\[ x_2 \approx -1.8507810593582121 \][/tex]

And the discriminant is 41.