The hypotenuse of a [tex]$45^{\circ}-45^{\circ}-90^{\circ}$[/tex] triangle measures [tex]$7 \sqrt{2}$[/tex] units. What is the length of one leg of the triangle?

A. 7 units
B. [tex][tex]$7 \sqrt{2}$[/tex][/tex] units
C. 14 units
D. [tex]$14 \sqrt{2}$[/tex] units



Answer :

To solve for the length of one leg of a [tex]\(45^\circ - 45^\circ - 90^\circ\)[/tex] triangle given that the hypotenuse measures [tex]\(7 \sqrt{2}\)[/tex] units, we can take advantage of the properties of such triangles. In a [tex]\(45^\circ - 45^\circ - 90^\circ\)[/tex] triangle, the legs are congruent, and each leg is [tex]\( \frac{1}{\sqrt{2}} \)[/tex] times the length of the hypotenuse.

The process is as follows:

1. Identify the relationship in a [tex]\(45^\circ - 45^\circ - 90^\circ\)[/tex] triangle: The hypotenuse [tex]\( c \)[/tex] is related to the legs [tex]\( a \)[/tex] and [tex]\( b \)[/tex] (which are of the same length) by the formula:
[tex]\[ c = a \sqrt{2} \][/tex]

2. Given hypotenuse: [tex]\( c = 7 \sqrt{2} \)[/tex] units.

3. Set up the equation: Substitute [tex]\( c \)[/tex] into the relationship:
[tex]\[ 7 \sqrt{2} = a \sqrt{2} \][/tex]

4. Solve for [tex]\( a \)[/tex]:
- Divide both sides by [tex]\( \sqrt{2} \)[/tex]:
[tex]\[ a = \frac{7 \sqrt{2}}{\sqrt{2}} \][/tex]
- Simplify the right-hand side:
[tex]\[ a = \frac{7 \sqrt{2}}{\sqrt{2}} = 7 \][/tex]

Hence, the length of one leg of the triangle is [tex]\( \boxed{7} \)[/tex] units.