Multiply: [tex](3 \times 10^{-6})(1.2 \times 10^5)[/tex]. Enter your answer as an integer or a decimal.



Answer :

Sure, let’s solve the problem step by step:

We need to multiply two numbers:
[tex]\[ \left(3 \times 10^{-6}\right) \text{ and } \left(1.2 \times 10^5\right) \][/tex]

1. Step 1: Separate and handle the coefficients:

We have the numbers:
[tex]\[ 3 \][/tex]
and
[tex]\[ 1.2 \][/tex]

Multiplying these two gives:
[tex]\[ 3 \times 1.2 = 3.6 \][/tex]

2. Step 2: Handle the powers of 10:

We have:
[tex]\[ 10^{-6} \][/tex]
and
[tex]\[ 10^5 \][/tex]

When multiplying powers of 10, you add the exponents:
[tex]\[ 10^{-6 + 5} = 10^{-1} \][/tex]

3. Step 3: Combine the coefficient and the power of 10:

Combine the results from the coefficients and the powers of 10:
[tex]\[ 3.6 \times 10^{-1} \][/tex]

4. Step 4: Simplify the expression:

We can rewrite [tex]\( 3.6 \times 10^{-1} \)[/tex] as:
[tex]\[ 3.6 \times 0.1 = 0.36 \][/tex]

Thus, the product of [tex]\( \left(3 \times 10^{-6}\right) \)[/tex] and [tex]\( \left(1.2 \times 10^5\right) \)[/tex] is:
[tex]\[ 0.36 \][/tex]

So, the final answer is:
[tex]\[ 0.36 \][/tex]