Drag each label to the correct location in the equation. Not all tiles will be used.

The density of mercury is 13.6 grams per cubic centimeter. Complete the steps for converting [tex]$13.6 \, g/cm^3$[/tex] to [tex]$kg/m^3$[/tex].

[tex]\[
\begin{array}{l}
\left(1 \, kg = 1{,}000 \, g, \, 1 \, m^3 = 10^6 \, cm^3 \right) \\
\left.13.6 \times 10^3 \, \frac{kg}{m^3} \right) \\
\frac{13.6 \, g}{cm^3} \times \frac{1{,}000 \, g}{1 \, kg} \times \frac{10^6 \, cm^3}{1 \, m^3}
\end{array}
\][/tex]

Labels:
- 13.6
- [tex]\times 10^3[/tex]
- [tex]\frac{kg}{m^3}[/tex]
- [tex]\frac{g}{cm^3}[/tex]
- 1
- [tex]\frac{10^6 \, cm^3}{1 \, m^3}[/tex]
- [tex]\frac{1 \, kg}{1{,}000 \, g}[/tex]
- [tex]\frac{1{,}000 \, g}{1 \, kg}[/tex]

Correct arrangement:
- 13.6 [tex]\frac{g}{cm^3}[/tex]
- [tex]\times \frac{1{,}000 \, g}{1 \, kg}[/tex]
- [tex]\times \frac{10^6 \, cm^3}{1 \, m^3}[/tex]



Answer :

Sure, let's break down the conversion process step by step.

The goal is to convert the density of mercury from [tex]\( \text{grams per cubic centimeter (g/cm}^3 \text{)} \)[/tex] to [tex]\( \text{kilograms per cubic meter (kg/m}^3 \text{)} \)[/tex].

Given:
- The density of mercury is [tex]\( 13.6 \, \text{g/cm}^3 \)[/tex].
- [tex]\( 1 \, \text{kg} = 1,000 \, \text{g} \)[/tex].
- [tex]\( 1 \, \text{m}^3 = 10^6 \, \text{cm}^3 \)[/tex].

### Step-by-Step Conversion:

1. Convert grams to kilograms:
Since [tex]\( 1 \, \text{kg} = 1,000 \, \text{g} \)[/tex], we can rewrite [tex]\( 13.6 \, \text{g/cm}^3 \)[/tex] in kilograms as:
[tex]\[ 13.6 \, \text{g/cm}^3 \times \frac{1 \, \text{kg}}{1,000 \, \text{g}} \][/tex]

2. Convert cubic centimeters to cubic meters:
Since [tex]\( 1 \, \text{m}^3 = 10^6 \, \text{cm}^3 \)[/tex], and we want to convert the volume from cm[tex]\(^3\)[/tex] to m[tex]\(^3\)[/tex], we multiply by:
[tex]\[ \frac{10^6 \, \text{cm}^3}{1 \, \text{m}^3} \][/tex]

3. Combine the conversions:
With the conversions above:
[tex]\[ \frac{13.6 \, \text{g}}{\text{cm}^3} \times \frac{1 \, \text{kg}}{1,000 \, \text{g}} \times \frac{10^6 \, \text{cm}^3}{1 \, \text{m}^3} \][/tex]

4. Simplify the expression:
[tex]\[ \frac{13.6 \times 10^6 \, \text{kg}}{1,000 \, \text{m}^3} \][/tex]

5. Perform the final calculation:
[tex]\[ 13.6 \times 10^6 \, \text{kg} \times \frac{1}{1,000 \, \text{m}^3} = 13,600,000 \, \text{kg/m}^3 \][/tex]

Therefore, the density of mercury converted to [tex]\( \text{kg/m}^3 \)[/tex] is [tex]\( 13,600,000 \, \text{kg/m}^3 \)[/tex].