Answered

Which of the following expressions are equivalent to [tex]\frac{2}{x^0 - y^3}[/tex]? Choose all that apply.

A. [tex]\frac{1}{(x^2 - y^2)} \cdot \frac{1}{(x^2 + y^2)}[/tex]

B. [tex]\frac{2}{(x^2)^2 - (y^2)^1}[/tex]

C. [tex]\frac{2}{(x^2 - y^3)} \cdot \frac{1}{(x^3 - y^2)}[/tex]

D. [tex]\frac{2}{(x^3 - y^3)} \cdot \frac{1}{(x^3 + y^3)}[/tex]



Answer :

Given the expression [tex]\(\frac{2}{x^0 - y^3}\)[/tex], let's begin by simplifying it:

1. Simplify the base expression:

[tex]\[ x^0 = 1 \quad \text{for any } x \][/tex]

Therefore,

[tex]\[ \frac{2}{x^0 - y^3} = \frac{2}{1 - y^3} \][/tex]

Now, we will check each given expression to see if they are equivalent to [tex]\(\frac{2}{1 - y^3}\)[/tex].

2. Check each given expression:

A. [tex]\(\frac{1}{\left(x^2 - y^2\right)} \cdot \frac{1}{\left(x^2 + y^2\right)}\)[/tex]

This can be simplified to:

[tex]\[ \frac{1}{(x^2 - y^2)(x^2 + y^2)} \][/tex]

Simplifying further,

[tex]\[ (x^2 - y^2)(x^2 + y^2) = x^4 - y^4 \][/tex]

Therefore,

[tex]\[ \frac{1}{(x^2 - y^2)(x^2 + y^2)} = \frac{1}{x^4 - y^4} \][/tex]

This is not equivalent to [tex]\(\frac{2}{1 - y^3}\)[/tex].

B. [tex]\(\frac{2}{(x^2)^2 - (y^2)^1}\)[/tex]

Simplify the expression in the denominator:

[tex]\[ (x^2)^2 = x^4 \quad \text{and} \quad (y^2)^1 = y^2 \][/tex]

Hence,

[tex]\[ \frac{2}{x^4 - y^2} \][/tex]

This is not equivalent to [tex]\(\frac{2}{1 - y^3}\)[/tex].

C. [tex]\(\frac{2}{x^2 - y^3} \cdot \frac{1}{x^3 - y^2}\)[/tex]

This can be written as:

[tex]\[ \frac{2}{(x^2 - y^3)(x^3 - y^2)} \][/tex]

This does not simplify in any way that is equivalent to [tex]\(\frac{2}{1 - y^3}\)[/tex].

D. [tex]\(\frac{2}{x^3 - y^3} \cdot \frac{1}{x^3 + y^3}\)[/tex]

This can be written as:

[tex]\[ \frac{2}{(x^3 - y^3)(x^3 + y^3)} \][/tex]

Simplifying the denominator,

[tex]\[ (x^3 - y^3)(x^3 + y^3) = x^6 - y^6 \][/tex]

Hence,

[tex]\[ \frac{2}{x^6 - y^6} \][/tex]

This is also not equivalent to [tex]\(\frac{2}{1 - y^3}\)[/tex].

3. Conclusion:

None of the provided expressions [tex]\(A, B, C,\)[/tex] or [tex]\(D\)[/tex] are equivalent to [tex]\(\frac{2}{1 - y^3}\)[/tex]. Therefore, no expressions apply.