Answer :
Let's analyze each ordered pair to see if it fits the given function [tex]\( f(x) = 3 - 2x \)[/tex].
1. For the pair [tex]\((-2, -1)\)[/tex]:
- Calculate [tex]\( f(-2) \)[/tex]:
[tex]\[ f(-2) = 3 - 2(-2) = 3 + 4 = 7 \][/tex]
- The calculated value [tex]\( 7 \)[/tex] does not match [tex]\( -1 \)[/tex], so [tex]\((-2, -1)\)[/tex] is not an ordered pair of this function.
2. For the pair [tex]\((1, 0)\)[/tex]:
- Calculate [tex]\( f(1) \)[/tex]:
[tex]\[ f(1) = 3 - 2(1) = 3 - 2 = 1 \][/tex]
- The calculated value [tex]\( 1 \)[/tex] does not match [tex]\( 0 \)[/tex], so [tex]\((1, 0)\)[/tex] is not an ordered pair of this function.
3. For the pair [tex]\((2, -1)\)[/tex]:
- Calculate [tex]\( f(2) \)[/tex]:
[tex]\[ f(2) = 3 - 2(2) = 3 - 4 = -1 \][/tex]
- The calculated value [tex]\( -1 \)[/tex] matches [tex]\(-1\)[/tex], so [tex]\((2, -1)\)[/tex] is an ordered pair of this function.
4. For the pair [tex]\((0, 3)\)[/tex]:
- Calculate [tex]\( f(0) \)[/tex]:
[tex]\[ f(0) = 3 - 2(0) = 3 \][/tex]
- The calculated value [tex]\( 3 \)[/tex] matches [tex]\( 3 \)[/tex], so [tex]\((0, 3)\)[/tex] is an ordered pair of this function.
5. For the pair [tex]\((-1, 5)\)[/tex]:
- Calculate [tex]\( f(-1) \)[/tex]:
[tex]\[ f(-1) = 3 - 2(-1) = 3 + 2 = 5 \][/tex]
- The calculated value [tex]\( 5 \)[/tex] matches [tex]\( 5 \)[/tex], so [tex]\((-1, 5)\)[/tex] is an ordered pair of this function.
Thus, the ordered pairs that fit the function [tex]\( f(x) = 3 - 2x \)[/tex] are:
[tex]\[ (2, -1), (0, 3), (-1, 5) \][/tex]
1. For the pair [tex]\((-2, -1)\)[/tex]:
- Calculate [tex]\( f(-2) \)[/tex]:
[tex]\[ f(-2) = 3 - 2(-2) = 3 + 4 = 7 \][/tex]
- The calculated value [tex]\( 7 \)[/tex] does not match [tex]\( -1 \)[/tex], so [tex]\((-2, -1)\)[/tex] is not an ordered pair of this function.
2. For the pair [tex]\((1, 0)\)[/tex]:
- Calculate [tex]\( f(1) \)[/tex]:
[tex]\[ f(1) = 3 - 2(1) = 3 - 2 = 1 \][/tex]
- The calculated value [tex]\( 1 \)[/tex] does not match [tex]\( 0 \)[/tex], so [tex]\((1, 0)\)[/tex] is not an ordered pair of this function.
3. For the pair [tex]\((2, -1)\)[/tex]:
- Calculate [tex]\( f(2) \)[/tex]:
[tex]\[ f(2) = 3 - 2(2) = 3 - 4 = -1 \][/tex]
- The calculated value [tex]\( -1 \)[/tex] matches [tex]\(-1\)[/tex], so [tex]\((2, -1)\)[/tex] is an ordered pair of this function.
4. For the pair [tex]\((0, 3)\)[/tex]:
- Calculate [tex]\( f(0) \)[/tex]:
[tex]\[ f(0) = 3 - 2(0) = 3 \][/tex]
- The calculated value [tex]\( 3 \)[/tex] matches [tex]\( 3 \)[/tex], so [tex]\((0, 3)\)[/tex] is an ordered pair of this function.
5. For the pair [tex]\((-1, 5)\)[/tex]:
- Calculate [tex]\( f(-1) \)[/tex]:
[tex]\[ f(-1) = 3 - 2(-1) = 3 + 2 = 5 \][/tex]
- The calculated value [tex]\( 5 \)[/tex] matches [tex]\( 5 \)[/tex], so [tex]\((-1, 5)\)[/tex] is an ordered pair of this function.
Thus, the ordered pairs that fit the function [tex]\( f(x) = 3 - 2x \)[/tex] are:
[tex]\[ (2, -1), (0, 3), (-1, 5) \][/tex]