Sure, let's find the sum of the given complex numbers step-by-step.
We start with the two complex numbers provided:
[tex]\[
(3 + 3i) \quad \text{and} \quad (8 + 7i)
\][/tex]
### Step 1: Add the Real Parts
First, let's add the real parts of the complex numbers:
[tex]\[
3 + 8 = 11
\][/tex]
### Step 2: Add the Imaginary Parts
Next, let's add the imaginary parts of the complex numbers:
[tex]\[
3i + 7i = 10i
\][/tex]
### Step 3: Combine the Results
Now, we combine the results of the real and imaginary parts:
[tex]\[
11 + 10i
\][/tex]
So, the sum of the complex numbers [tex]\((3 + 3i)\)[/tex] and [tex]\((8 + 7i)\)[/tex] is:
[tex]\[
11 + 10i
\][/tex]
### Conclusion
The correct option is:
[tex]\[
\boxed{B. \ 11 + 10i}
\][/tex]