Use the factor tree to find the prime factorization of 100.

```
100
├── 10
│ ├── 2
│ └── 5
└── 10
├── 2
└── 5
```

What is the prime factorization of [tex]$100$[/tex]?

A. [tex]2 \times 5[/tex]

B. [tex]2 \times 2 \times 5 \times 5[/tex]

C. [tex]2 \times 5 \times 10[/tex]

D. [tex]10 \times 10[/tex]



Answer :

To find the prime factorization of [tex]\(100\)[/tex] using a factor tree, let's break down the step-by-step process:

1. Start with the number 100: The goal is to break it down into prime factors gradually.

2. Divide by the smallest prime number:

[tex]\[ 100 \div 2 = 50 \][/tex]

So, [tex]\(100\)[/tex] can be expressed as [tex]\(2 \times 50\)[/tex].

3. Continue factoring 50:

[tex]\[ 50 \div 2 = 25 \][/tex]

Hence, [tex]\(50\)[/tex] can be expressed as [tex]\(2 \times 25\)[/tex].

4. Factor 25 further:

[tex]\[ 25 \div 5 = 5 \][/tex]

So, [tex]\(25\)[/tex] can be expressed as [tex]\(5 \times 5\)[/tex].

Now, we have broken down [tex]\(100\)[/tex] into its prime factors:

[tex]\[ 100 = 2 \times 2 \times 5 \times 5 \][/tex]

Therefore, the prime factorization of [tex]\(100\)[/tex] is:

[tex]\(\boxed{2 \times 2 \times 5 \times 5}\)[/tex]

Looking at the options provided:

- [tex]\(2 \times 5\)[/tex]
- [tex]\(2 \times 2 \times 5 \times 5\)[/tex]
- [tex]\(2 \times 5 \times 10\)[/tex]
- [tex]\(10 \times 10\)[/tex]

The correct prime factorization is:

[tex]\[ \boxed{2 \times 2 \times 5 \times 5} \][/tex]