To solve the expression [tex]\(\{[(-15+5) \times 2+8]-32 \div 8\}-(-7)\)[/tex], let's break it down step-by-step:
1. Simplify inside the innermost parentheses:
- Calculate [tex]\((-15 + 5)\)[/tex]:
[tex]\[-15 + 5 = -10\][/tex]
2. Next, multiply the result by 2:
- Calculate [tex]\((-10) \times 2\)[/tex]:
[tex]\[-10 \times 2 = -20\][/tex]
3. Add 8 to the result:
- Calculate [tex]\(-20 + 8\)[/tex]:
[tex]\[-20 + 8 = -12\][/tex]
4. Divide 32 by 8:
- Calculate [tex]\(\frac{32}{8}\)[/tex]:
[tex]\[\frac{32}{8} = 4.0\][/tex]
5. Subtract the result of the division from the previous addition:
- Calculate [tex]\(-12 - 4.0\)[/tex]:
[tex]\[-12 - 4.0 = -16.0\][/tex]
6. Subtracting a negative is the same as adding:
- Calculate [tex]\(-16.0 - (-7)\)[/tex]:
[tex]\[-16.0 + 7 = -9.0\][/tex]
Therefore, the final result of the expression [tex]\(\{[(-15+5) \times 2+8]-32 \div 8\}-(-7)\)[/tex] is [tex]\(-9.0\)[/tex].