Answer :
Sure, let's solve the expression step-by-step:
Given expression:
[tex]\[ \left\{-10-\left[12+(-3)^2\right]+3^3\right\} \div(-3) \][/tex]
1. Step 1: Evaluate the innermost brackets: [tex]\((-3)^2\)[/tex]:
[tex]\[ (-3)^2 = 9 \][/tex]
2. Step 2: Add 12 and 9:
[tex]\[ 12 + 9 = 21 \][/tex]
3. Step 3: Substitute back into the expression and simplify the intermediate result:
[tex]\[ -10 - 21 \][/tex]
4. Step 4: Perform the subtraction:
[tex]\[ -10 - 21 = -31 \][/tex]
5. Step 5: Add [tex]\(3^3\)[/tex] which is the next term to simplify:
[tex]\[ 3^3 = 27 \][/tex]
6. Step 6: Add 27 to [tex]\(-31): \[ -31 + 27 = -4 \] 7. Step 7: Finally, divide by \(-3\)[/tex]:
[tex]\[ \frac{-4}{-3} = 1.3333333333333333 \][/tex]
So, the final result of the expression is:
[tex]\[ 1.3333333333333333 \][/tex]
Given expression:
[tex]\[ \left\{-10-\left[12+(-3)^2\right]+3^3\right\} \div(-3) \][/tex]
1. Step 1: Evaluate the innermost brackets: [tex]\((-3)^2\)[/tex]:
[tex]\[ (-3)^2 = 9 \][/tex]
2. Step 2: Add 12 and 9:
[tex]\[ 12 + 9 = 21 \][/tex]
3. Step 3: Substitute back into the expression and simplify the intermediate result:
[tex]\[ -10 - 21 \][/tex]
4. Step 4: Perform the subtraction:
[tex]\[ -10 - 21 = -31 \][/tex]
5. Step 5: Add [tex]\(3^3\)[/tex] which is the next term to simplify:
[tex]\[ 3^3 = 27 \][/tex]
6. Step 6: Add 27 to [tex]\(-31): \[ -31 + 27 = -4 \] 7. Step 7: Finally, divide by \(-3\)[/tex]:
[tex]\[ \frac{-4}{-3} = 1.3333333333333333 \][/tex]
So, the final result of the expression is:
[tex]\[ 1.3333333333333333 \][/tex]