Answer :
Alright, let's solve this step-by-step:
We have the balanced chemical equation:
[tex]\[ 2 \, \text{C}_2\text{H}_2 (\text{g}) + 5 \, \text{O}_2 (\text{g}) \rightarrow 4 \, \text{CO}_2 (\text{g}) + 2 \, \text{H}_2\text{O} (\text{g}) \][/tex]
We need to determine how many liters of [tex]\(\text{C}_2\text{H}_2\)[/tex] are required to produce 8 liters of [tex]\(\text{CO}_2\)[/tex].
From the balanced equation, we know the volume ratios are as follows:
[tex]\[ 2 \, \text{L} \, \text{C}_2\text{H}_2 \text{ produces } 4 \, \text{L} \, \text{CO}_2 \][/tex]
We can set up the ratio of [tex]\(\text{C}_2\text{H}_2\)[/tex] to [tex]\(\text{CO}_2\)[/tex] from the equation:
[tex]\[ \frac{2 \, \text{L} \, \text{C}_2\text{H}_2}{4 \, \text{L} \, \text{CO}_2} \][/tex]
Let [tex]\( x \)[/tex] be the volume of [tex]\(\text{C}_2\text{H}_2\)[/tex] needed to produce 8 liters of [tex]\(\text{CO}_2\)[/tex]:
[tex]\[ \frac{2 \, \text{L} \, \text{C}_2\text{H}_2}{4 \, \text{L} \, \text{CO}_2} = \frac{x \, \text{L} \, \text{C}_2\text{H}_2}{8 \, \text{L} \, \text{CO}_2} \][/tex]
To solve for [tex]\( x \)[/tex], we can cross-multiply:
[tex]\[ 2 \times 8 = 4 \times x \][/tex]
[tex]\[ 16 = 4x \][/tex]
Now, we divide both sides by 4 to isolate [tex]\( x \)[/tex]:
[tex]\[ x = \frac{16}{4} \][/tex]
[tex]\[ x = 4 \][/tex]
Therefore, the volume of [tex]\(\text{C}_2\text{H}_2\)[/tex] required to produce 8 liters of [tex]\(\text{CO}_2\)[/tex] is [tex]\( 4 \)[/tex] liters.
We have the balanced chemical equation:
[tex]\[ 2 \, \text{C}_2\text{H}_2 (\text{g}) + 5 \, \text{O}_2 (\text{g}) \rightarrow 4 \, \text{CO}_2 (\text{g}) + 2 \, \text{H}_2\text{O} (\text{g}) \][/tex]
We need to determine how many liters of [tex]\(\text{C}_2\text{H}_2\)[/tex] are required to produce 8 liters of [tex]\(\text{CO}_2\)[/tex].
From the balanced equation, we know the volume ratios are as follows:
[tex]\[ 2 \, \text{L} \, \text{C}_2\text{H}_2 \text{ produces } 4 \, \text{L} \, \text{CO}_2 \][/tex]
We can set up the ratio of [tex]\(\text{C}_2\text{H}_2\)[/tex] to [tex]\(\text{CO}_2\)[/tex] from the equation:
[tex]\[ \frac{2 \, \text{L} \, \text{C}_2\text{H}_2}{4 \, \text{L} \, \text{CO}_2} \][/tex]
Let [tex]\( x \)[/tex] be the volume of [tex]\(\text{C}_2\text{H}_2\)[/tex] needed to produce 8 liters of [tex]\(\text{CO}_2\)[/tex]:
[tex]\[ \frac{2 \, \text{L} \, \text{C}_2\text{H}_2}{4 \, \text{L} \, \text{CO}_2} = \frac{x \, \text{L} \, \text{C}_2\text{H}_2}{8 \, \text{L} \, \text{CO}_2} \][/tex]
To solve for [tex]\( x \)[/tex], we can cross-multiply:
[tex]\[ 2 \times 8 = 4 \times x \][/tex]
[tex]\[ 16 = 4x \][/tex]
Now, we divide both sides by 4 to isolate [tex]\( x \)[/tex]:
[tex]\[ x = \frac{16}{4} \][/tex]
[tex]\[ x = 4 \][/tex]
Therefore, the volume of [tex]\(\text{C}_2\text{H}_2\)[/tex] required to produce 8 liters of [tex]\(\text{CO}_2\)[/tex] is [tex]\( 4 \)[/tex] liters.