9. Which of the following rational numbers lies between [tex]-\frac{4}{5}[/tex] and [tex]-\frac{3}{7}[/tex]?

(a) [tex]-\frac{29}{15}[/tex] and [tex]-\frac{20}{15}[/tex]

(b) [tex]-\frac{21}{35}[/tex] and [tex]-\frac{20}{35}[/tex]

(c) [tex]-\frac{28}{35}[/tex] and [tex]-\frac{25}{35}[/tex]

(d) [tex]-\frac{14}{35}[/tex] and [tex]-\frac{13}{35}[/tex]



Answer :

Let's solve the problem step-by-step:

First, we need to determine the decimal equivalents of [tex]\(-\frac{4}{5}\)[/tex] and [tex]\(-\frac{3}{7}\)[/tex] so that we can compare.

1. Convert [tex]\(-\frac{4}{5}\)[/tex] to decimal:
[tex]\[ -\frac{4}{5} = -0.8 \][/tex]

2. Convert [tex]\(-\frac{3}{7}\)[/tex] to decimal:
[tex]\[ -\frac{3}{7} \approx -0.4286 \][/tex]

We are looking for rational numbers (fractions) that lie between [tex]\(-0.8\)[/tex] and [tex]\(-0.4286\)[/tex]. Let's examine each option:

### Option (a): [tex]\(-\frac{29}{15}\)[/tex] and [tex]\(-\frac{20}{15}\)[/tex]

1. Convert [tex]\(-\frac{29}{15}\)[/tex] to decimal:
[tex]\[ -\frac{29}{15} \approx -1.9333 \][/tex]

2. Convert [tex]\(-\frac{20}{15}\)[/tex] to decimal:
[tex]\[ -\frac{20}{15} \approx -1.3333 \][/tex]

Both [tex]\(-1.9333\)[/tex] and [tex]\(-1.3333\)[/tex] are less than [tex]\(-0.8\)[/tex]. Thus, neither of these two numbers lie between [tex]\(-0.8\)[/tex] and [tex]\(-0.4286\)[/tex].

### Option (b): [tex]\(-\frac{21}{35}\)[/tex] and [tex]\(-\frac{20}{35}\)[/tex]

1. Convert [tex]\(-\frac{21}{35}\)[/tex] to decimal:
[tex]\[ -\frac{21}{35} = -0.6 \][/tex]

2. Convert [tex]\(-\frac{20}{35}\)[/tex] to decimal:
[tex]\[ -\frac{20}{35} \approx -0.5714 \][/tex]

Both [tex]\(-0.6\)[/tex] and [tex]\(-0.5714\)[/tex] are between [tex]\(-0.8\)[/tex] and [tex]\(-0.4286\)[/tex]. Hence, these numbers satisfy the condition.

### Option (c): [tex]\(-\frac{28}{35}\)[/tex] and [tex]\(-\frac{25}{35}\)[/tex]

1. Convert [tex]\(-\frac{28}{35}\)[/tex] to decimal:
[tex]\[ -\frac{28}{35} \approx -0.8 \][/tex]

2. Convert [tex]\(-\frac{25}{35}\)[/tex] to decimal:
[tex]\[ -\frac{25}{35} \approx -0.7143 \][/tex]

Neither of these numbers are within the range [tex]\(-0.8\)[/tex] and [tex]\(-0.4286\)[/tex]. While [tex]\(-0.7143\)[/tex] could be considered in range, [tex]\(-0.8\)[/tex] is the lower boundary and does not strictly satisfy lying between the values.

### Option (d): [tex]\(-\frac{14}{35}\)[/tex] and [tex]\(-\frac{13}{35}\)[/tex]

1. Convert [tex]\(-\frac{14}{35}\)[/tex] to decimal:
[tex]\[ -\frac{14}{35} \approx -0.4 \][/tex]

2. Convert [tex]\(-\frac{13}{35}\)[/tex] to decimal:
[tex]\[ -\frac{13}{35} \approx -0.3714 \][/tex]

Both [tex]\(-0.4\)[/tex] and [tex]\(-0.3714\)[/tex] are greater than [tex]\(-0.4286\)[/tex]. Thus, neither of these numbers satisfy the condition.

### Conclusion:

The rational numbers in option (b) are the ones that lie between [tex]\(-\frac{4}{5}\)[/tex] and [tex]\(-\frac{3}{7}\)[/tex]:
[tex]\(\boxed{b}\)[/tex]