Answer :

To find the dot product of two vectors [tex]\(\mathbf{a}\)[/tex] and [tex]\(\mathbf{b}\)[/tex], you can use the formula:

[tex]\[ \mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 \][/tex]

where [tex]\(\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}\)[/tex] and [tex]\(\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}\)[/tex].

Given:
[tex]\[ \mathbf{a} = -5 \mathbf{i} + 2 \mathbf{j} + 7 \mathbf{k} \][/tex]
[tex]\[ \mathbf{b} = 4 \mathbf{i} + 3 \mathbf{j} + 7 \mathbf{k} \][/tex]

We identify the components:
[tex]\[ a_1 = -5, \quad a_2 = 2, \quad a_3 = 7 \][/tex]
[tex]\[ b_1 = 4, \quad b_2 = 3, \quad b_3 = 7 \][/tex]

Now, apply these values to the dot product formula:
[tex]\[ \mathbf{a} \cdot \mathbf{b} = (-5)(4) + (2)(3) + (7)(7) \][/tex]

Calculate each term:
[tex]\[ -5 \times 4 = -20 \][/tex]
[tex]\[ 2 \times 3 = 6 \][/tex]
[tex]\[ 7 \times 7 = 49 \][/tex]

Add these results together:
[tex]\[ -20 + 6 + 49 \][/tex]

Combine the sums:
[tex]\[ -20 + 6 = -14 \][/tex]
[tex]\[ -14 + 49 = 35 \][/tex]

Therefore, the dot product of the vectors [tex]\(\mathbf{a}\)[/tex] and [tex]\(\mathbf{b}\)[/tex] is:
[tex]\[ 35 \][/tex]