What is the magnification of a real image if the image is [tex]$50.0 \, \text{cm}$[/tex] from a lens and the object is [tex]$10.0 \, \text{cm}$[/tex] from the lens? Use the equation [tex][tex]$m=-\frac{d_i}{d_0}$[/tex][/tex].

A. 5.0
B. 0.20
C. -0.20
D. -5.0



Answer :

To determine the magnification of the real image, we can use the given formula for magnification:
[tex]\[ m = -\frac{d_i}{d_o} \][/tex]

Here, [tex]\( d_i \)[/tex] is the image distance, and [tex]\( d_o \)[/tex] is the object distance. In this problem:
- The image distance [tex]\( d_i \)[/tex] is [tex]\( 50.0 \)[/tex] cm.
- The object distance [tex]\( d_o \)[/tex] is [tex]\( 10.0 \)[/tex] cm.

Now, let's plug these values into the magnification formula:

1. Identify the values:
[tex]\[ d_i = 50.0 \, \text{cm} \][/tex]
[tex]\[ d_o = 10.0 \, \text{cm} \][/tex]

2. Substitute the values into the formula:
[tex]\[ m = -\frac{50.0}{10.0} \][/tex]

3. Perform the division:
[tex]\[ m = -5.0 \][/tex]

Therefore, the magnification of the image is [tex]\(-5.0\)[/tex].

So, the correct answer is:
D. [tex]\(-5.0\)[/tex]