Question 3

Simplify [tex]\left(g^4 h\right)^6[/tex]:

A. [tex]\left(g^{10} h\right)^6[/tex]
B. [tex]g^{24} h[/tex]
C. [tex]g^{10} h[/tex]
D. [tex]g^{24} h^6[/tex]



Answer :

Let's simplify the given expressions step-by-step.

### Expression 1: [tex]\(\left(g^4 h\right)^6\)[/tex]

First, we need to apply the power of a product rule, which states [tex]\((ab)^n = a^n b^n\)[/tex]:

[tex]\[ \left(g^4 h\right)^6 = \left(g^4\right)^6 \cdot \left(h\right)^6 \][/tex]

Next, apply the power of a power rule, which states [tex]\(\left(a^m\right)^n = a^{m \cdot n}\)[/tex]:

[tex]\[ \left(g^4\right)^6 = g^{4 \cdot 6} = g^{24} \][/tex]
[tex]\[ \left(h\right)^6 = h^6 \][/tex]

Therefore, the simplified form of [tex]\(\left(g^4 h\right)^6\)[/tex] is:

[tex]\[ g^{24} h^6 \][/tex]

### Expression 2: [tex]\(\left(g^{10} h\right)^6\)[/tex]

Similarly, apply the power of a product rule first:

[tex]\[ \left(g^{10} h\right)^6 = \left(g^{10}\right)^6 \cdot \left(h\right)^6 \][/tex]

Next, apply the power of a power rule:

[tex]\[ \left(g^{10}\right)^6 = g^{10 \cdot 6} = g^{60} \][/tex]
[tex]\[ \left(h\right)^6 = h^6 \][/tex]

Therefore, the simplified form of [tex]\(\left(g^{10} h\right)^6\)[/tex] is:

[tex]\[ g^{60} h^6 \][/tex]

### Given Options:

1. [tex]\(g^{24} h\)[/tex]
2. [tex]\(g^{24} h^6\)[/tex]
3. [tex]\(g^{10} h\)[/tex]
4. [tex]\(g^{10} h^6\)[/tex]

### Compare the Simplified Expressions with the Options:

1. The simplified form of [tex]\(\left(g^4 h\right)^6\)[/tex] is [tex]\(g^{24} h^6\)[/tex], which corresponds to option 2.
2. The simplified form of [tex]\(\left(g^{10} h\right)^6\)[/tex] is [tex]\(g^{60} h^6\)[/tex], which does not correspond to any of the given options directly.

Thus, the correct answer that matches the simplified forms is:

[tex]\[ g^{24} h^6 \][/tex]

So, option 2 ([tex]\(g^{24} h^6\)[/tex]) is the simplified form of [tex]\(\left(g^4 h\right)^6\)[/tex].