Question 1

Simplify [tex]\frac{y^{-3}}{4 y^6}[/tex].

A. [tex]\frac{1}{4 y^9}[/tex]

B. [tex]\frac{1}{4 y^2}[/tex]

C. [tex]\frac{1}{4 y^3}[/tex]

D. [tex]\frac{y^9}{4}[/tex]



Answer :

Sure, let's simplify the given expression step-by-step:

The expression given is:

[tex]\[ \frac{y^{-3}}{4 y^6} \][/tex]

Step 1: Combine the exponents of [tex]\( y \)[/tex] in the numerator and denominator. Recall that when dividing powers with the same base, you subtract the exponent in the denominator from the exponent in the numerator:

[tex]\[ \frac{y^{-3}}{4 y^6} = \frac{y^{-3}}{4 \cdot y^6} = \frac{1}{4} \cdot y^{-3 - 6} \][/tex]

Step 2: Now, simplify the exponent:

[tex]\[ -3 - 6 = -9 \][/tex]

So, we have:

[tex]\[ \frac{1}{4} \cdot y^{-9} = \frac{1}{4 y^9} \][/tex]

Therefore, the simplified form of the expression is:

[tex]\[ \frac{1}{4 y^9} \][/tex]

So, the correct answer is:

[tex]\[ \frac{1}{4 y^9} \][/tex]