Simplify [tex]\frac{p^6 q^4}{p^3 q^{16}}[/tex]

A. [tex]p^3 q^{12}[/tex]

B. [tex]\frac{p^3}{q^4}[/tex]

C. [tex]p^2 q^4[/tex]

D. [tex]\frac{p^3}{q^{12}}[/tex]



Answer :

Sure, let's simplify the given expression step by step:

Given expression:

[tex]\[ \frac{p^6 q^4}{p^3 q^{16}} \][/tex]

1. Simplify the [tex]\( p \)[/tex]-terms:

Apply the rule of exponents for division, which states [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex]:

[tex]\[ \frac{p^6}{p^3} = p^{6-3} = p^3 \][/tex]

2. Simplify the [tex]\( q \)[/tex]-terms:

Similarly, apply the same rule of exponents for the [tex]\( q \)[/tex]-terms:

[tex]\[ \frac{q^4}{q^{16}} = q^{4-16} = q^{-12} \][/tex]

3. Combine the simplified parts:

After simplifying both [tex]\( p \)[/tex] and [tex]\( q \)[/tex] terms, the expression can be written as:

[tex]\[ p^3 q^{-12} \][/tex]

4. Rewrite using positive exponents:

To rewrite using positive exponents, recall that [tex]\( a^{-n} = \frac{1}{a^n} \)[/tex]:

[tex]\[ p^3 q^{-12} = \frac{p^3}{q^{12}} \][/tex]

Therefore, the simplified expression is:

[tex]\[ \boxed{\frac{p^3}{q^{12}}} \][/tex]

So, the correct answer from the given choices is:

[tex]\[ \frac{p^3}{q^{12}} \][/tex]