Question 4

Divide [tex]$12xy^3z^6$[/tex] by [tex]$4x^5yz^{12}$[/tex].

A. [tex][tex]$3x^{-4}y^2z^6$[/tex][/tex]
B. [tex]$\frac{3x^2y^3}{y^2}$[/tex]
C. [tex]$3x^{-3}y^3z^6$[/tex]
D. [tex][tex]$\frac{3y^2}{4z^5}$[/tex][/tex]



Answer :

To divide [tex]\( \frac{12x y^3 z^6}{4 x^5 y z^{12}} \)[/tex]:

1. Divide the coefficients [tex]\(12\)[/tex] and [tex]\(4\)[/tex]:
[tex]\[ \frac{12}{4} = 3. \][/tex]

2. Handle the variables. Use the rules of exponents for division: [tex]\(a^m / a^n = a^{m-n}\)[/tex].

- For [tex]\(x\)[/tex]:
[tex]\[ x^1 / x^5 = x^{1-5} = x^{-4}. \][/tex]

- For [tex]\(y\)[/tex]:
[tex]\[ y^3 / y^1 = y^{3-1} = y^2. \][/tex]

- For [tex]\(z\)[/tex]:
[tex]\[ z^6 / z^{12} = z^{6-12} = z^{-6}. \][/tex]

3. Combine the results:
[tex]\[ \frac{12 x y^3 z^6}{4 x^5 y z^{12}} = 3 x^{-4} y^2 z^{-6}. \][/tex]

So, the final result is:
[tex]\[ 3 x^{-4} y^2 z^{-6}. \][/tex]

In other words, when you divide [tex]\(12 x y^3 z^6\)[/tex] by [tex]\(4 x^5 y z^{12}\)[/tex], you get [tex]\(3 x^{-4} y^2 z^{-6}\)[/tex].

Other Questions