To solve the equation [tex]\( x - 5y = 45 \)[/tex] for [tex]\( y \)[/tex] when [tex]\( x = 5 \)[/tex], follow these steps:
1. Start with the given equation:
[tex]\[
x - 5y = 45
\][/tex]
2. Substitute [tex]\( x = 5 \)[/tex] into the equation:
[tex]\[
5 - 5y = 45
\][/tex]
3. Isolate the term involving [tex]\( y \)[/tex] by moving the constant term ([tex]\( 5 \)[/tex]) to the other side of the equation:
[tex]\[
-5y = 45 - 5
\][/tex]
4. Simplify the right-hand side of the equation:
[tex]\[
-5y = 40
\][/tex]
5. Divide both sides of the equation by [tex]\(-5\)[/tex] to solve for [tex]\( y \)[/tex]:
[tex]\[
y = \frac{40}{-5}
\][/tex]
6. Perform the division:
[tex]\[
y = -8
\][/tex]
So the value of [tex]\( y \)[/tex] when [tex]\( x = 5 \)[/tex] is [tex]\( y = -8 \)[/tex]. Therefore, the solution to the equation [tex]\( x - 5y = 45 \)[/tex] when [tex]\( x = 5 \)[/tex] is:
[tex]\[
x = 5, \quad y = -8
\][/tex]