Complete the solution of the equation. Find the value of [tex]y[/tex] when [tex]x = 5[/tex].

[tex] x - 5y = 45 [/tex]



Answer :

To solve the equation [tex]\( x - 5y = 45 \)[/tex] for [tex]\( y \)[/tex] when [tex]\( x = 5 \)[/tex], follow these steps:

1. Start with the given equation:
[tex]\[ x - 5y = 45 \][/tex]

2. Substitute [tex]\( x = 5 \)[/tex] into the equation:
[tex]\[ 5 - 5y = 45 \][/tex]

3. Isolate the term involving [tex]\( y \)[/tex] by moving the constant term ([tex]\( 5 \)[/tex]) to the other side of the equation:
[tex]\[ -5y = 45 - 5 \][/tex]

4. Simplify the right-hand side of the equation:
[tex]\[ -5y = 40 \][/tex]

5. Divide both sides of the equation by [tex]\(-5\)[/tex] to solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{40}{-5} \][/tex]

6. Perform the division:
[tex]\[ y = -8 \][/tex]

So the value of [tex]\( y \)[/tex] when [tex]\( x = 5 \)[/tex] is [tex]\( y = -8 \)[/tex]. Therefore, the solution to the equation [tex]\( x - 5y = 45 \)[/tex] when [tex]\( x = 5 \)[/tex] is:
[tex]\[ x = 5, \quad y = -8 \][/tex]